Journal of Gastrointestinal Surgery

, Volume 18, Issue 1, pp 52–59 | Cite as

Distal Gastrectomy in Pancreaticoduodenectomy is Associated with Accelerated Gastric Emptying, Enhanced Postprandial Release of GLP-1, and Improved Insulin Sensitivity

  • Stefan Harmuth
  • Marlene Wewalka
  • Jens Juul Holst
  • Romina Nemecek
  • Sabine Thalhammer
  • Rainer Schmid
  • Klaus Sahora
  • Michael Gnant
  • Johannes MiholićEmail author
2013 SSAT Plenary



This study aims to investigate the relationship between gastric emptying, postprandial GLP-1 and insulin sensitivity after pancreaticoduodenectomy (PD).


Abnormal glucose regulation is highly prevalent in patients with pancreatic neoplasm and resolves in some after PD, the cause of which is unclear. The procedure is carried out with pylorus preservation (PPPD) or with distal gastrectomy (Whipple procedure). Accelerated gastric emptying and ensuing enhanced release of glucagon-like peptide-1 (GLP-1) conceivably play a role in glucose metabolism after PD. It was the purpose of this study to shed light on the relationship between gastric emptying, GLP-1 and glycemic control after PPPD and the Whipple procedure.


A 75-g oral glucose tolerance test was carried out in 13 patients having undergone PPPD and in 13 after the Whipple procedure, median age 61 (range, 32–70) years, following an interval of 23 (range, 5–199) months. Gastric emptying was measured by the paracetamol absorption method. Plasma concentrations of glucose, insulin, GLP-1 and paracetamol were measured at baseline, 10, 20, 30 60, 90, 120, 150 and 180 min. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) and oral glucose insulin sensitivity were calculated from glucose and insulin concentrations.


Patients with Whipple procedure as compared to PPPD had accelerated gastric emptying (p = 0.01) which correlated with early (0–30 min) integrated GLP-1 (AUC30; r 2 = 0.61; p = 0.02) and insulin sensitivity (r 2 = 0.41; p = 0.026) and inversely with HOMA-IR (r 2 = 0.17; p = 0.033). Two of 13 Whipple patients (15 %) as compared to seven of 13 after PPPD (54 %) had postload glucose concentrations (i.e. 120 min postmeal) ≥200 mg/dl (p < 0.05). None of 13 (0 %) after Whipple procedure but four of 13 patients (31 %) after PPPD had fasting glucose concentrations ≥126 mg/dl (p < 0.05)


Gastric emptying was accelerated after Whipple procedure as compared to patients who have undergone PPPD, resulting in higher postprandial GLP-1 concentrations and insulin sensitivity and improved glycemic control.


Pancreaticoduodenectomy Diabetes mellitus Gastric emptying. Glucagon-like peptide 1 Insulin resistance 



  1. 1.
    Whipple AO, Parsons WB, Mullins CR. Treatment of carcinoma of the ampulla of Vater. Ann Surg 1935;102:763-779.PubMedCrossRefGoogle Scholar
  2. 2.
    Are C, Dhir M, Ravipati L. History of pancreaticoduodenectomy: early misconceptions, initial milestones and the pioneers. HPB (Oxford) 2011;13:377-384.CrossRefGoogle Scholar
  3. 3.
    Traverso LW, Longmire WP Jr. Preservation of the pylorus in pancreaticoduodenectomy. Surg Gynecol Obstet 1978; 146: 959-962.PubMedGoogle Scholar
  4. 4.
    Tran KT, Smeenk HG, van Eijck CH, Kazemier G, Hop WC, Greve JW, Terpstra OT, Zijlstra JA, Klinkert P, Jeekel H. Pylorus preserving pancreaticoduodenectomy versus standard Whipple procedure: a prospective, randomized, multicenter analysis of 170 patients with pancreatic and periampullary tumors. Ann Surg 2004; 240:738-745.PubMedCrossRefGoogle Scholar
  5. 5.
    Diener MK, Knaebel HP, Heukaufer C, Antes G, Büchler MW, Seiler CM. A systematic review and meta-analysis of pylorus-preserving versus classical pancreaticoduodenectomy for surgical treatment of periampullary and pancreatic carcinoma. Ann Surg 2007; 245:187-200.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang F, Herrington M, Larsson J, Permert J. The relationship between diabetes and pancreatic cancer. Mol Cancer 2003; 2:4.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, Petersen GM. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 2008;134:95-101.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Permert J, Adrian TE, Jacobsson P, Jorfelt L, Fruin AB, Larsson J. Is profound peripheral insulin resistance in patients with pancreatic cancer caused by a tumor-associated factor? Am J Surg 1993;165:61-67.PubMedCrossRefGoogle Scholar
  9. 9.
    Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 2008;134:981-987.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007;87:1409-1439.PubMedCrossRefGoogle Scholar
  11. 11.
    Miholic J, Orskov C, Holst JJ, Kotzerke J, Meyer HJ. Emptying of the gastric substitute, glucagon-like peptide-1 (GLP-1), and reactive hypoglycemia after total gastrectomy. Dig Dis Sci 1991;36:1361-1370.PubMedCrossRefGoogle Scholar
  12. 12.
    Peterli R, Wolnerhanssen B, Peters T, Devaux N, Kern B, Christoffel-Courtin C, Drewe J, von Flue M, Beglinger C. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg 2009;250:234-241.PubMedCrossRefGoogle Scholar
  13. 13.
    Larsson H, Holst JJ, Ahren B. Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol Scand 1997;160:413-422.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470-512.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lee W, Ahn SH, Lee JH, Park do J, Lee HJ, Kim HH, Yang HK. Comparative study of diabetes mellitus resolution according to reconstruction type after gastrectomy in gastric cancer patients with diabetes mellitus. Obes Surg 2012;22:1238-1243.PubMedCrossRefGoogle Scholar
  16. 16.
    Kashyap SR, Daud S, Kelly KR, Gastaldelli A, Win H, Brethauer S, Kirwan JP, Schauer PR. Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond) 2010;34:462-471.CrossRefGoogle Scholar
  17. 17.
    Kawai M, Tani M, Hirono S, Miyazawa M, Shimizu A, Uchiyama K, Yamaue H. Pylorus ring resection reduces delayed gastric emptying in patients undergoing pancreatoduodenectomy: a prospective, randomized, controlled trial of pylorus-resecting versus pylorus-preserving pancreatoduodenectomy. Ann Surg 2011; 253: 495-501.PubMedCrossRefGoogle Scholar
  18. 18.
    Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 1986;60:1327-1332.PubMedGoogle Scholar
  19. 19.
    Miholic J, Reilmann L, Meyer HJ, Korber H, Kotzerke J, Hecker H. Extracellular space, blood volume, and the early dumping syndrome after total gastrectomy. Gastroenterology 1990;99:923-929.PubMedGoogle Scholar
  20. 20.
    Willems M, Quartero AO, Numans ME. How useful is paracetamol absorption as a marker of gastric emptying? A systematic literature study. Dig Dis Sci 2001;46:2256-2262.PubMedCrossRefGoogle Scholar
  21. 21.
    Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 2001;24:539-548.PubMedCrossRefGoogle Scholar
  22. 22.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-419.PubMedCrossRefGoogle Scholar
  23. 23.
    World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: WHO Document Production Services, 2006, pp21.Google Scholar
  24. 24.
    Vijan S. Type 2 diabetes. Ann Intern Med 2010;152: ITC31-15; quiz ITC316.Google Scholar
  25. 25.
    Cryer PE. Hypoglycemia. In: Jefferson L, Cherrington A, Goodman H (eds) for the American Physiological Society. Handbook of physiology,vol 2, 1st edn. New York: Oxford University Press, 2001, pp. 1057–1092Google Scholar
  26. 26.
    Miholic J, Hoffmann M, Holst JJ, Lenglinger J, Mittlbock M, Bergmann H, Stacher G. Gastric emptying of glucose solution and associated plasma concentrations of GLP-1, GIP, and PYY before and after fundoplication. Surg Endosc 2007;21:309-314.PubMedCrossRefGoogle Scholar
  27. 27.
    Laferrere B. Diabetes remission after bariatric surgery: is it just the incretins? Int J Obes (Lond) 2011;35Suppl3:22-25.Google Scholar
  28. 28.
    Gebhard B, Holst JJ, Biegelmayer C, Miholic J. Postprandial GLP-1, norepinephrine, and reactive hypoglycemia in dumping syndrome. Dig Dis Sci 2001;46:1915-1923.PubMedCrossRefGoogle Scholar
  29. 29.
    Fischer CP, Hong JC. Method of pyloric reconstruction and impact upon delayed gastric emptying and hospital stay after pylorus-preserving pancreaticoduodenectomy. J Gastrointest Surg 2006;10:215-219.PubMedCrossRefGoogle Scholar
  30. 30.
    Uravic M, Zelic M, Petrosic N, Tokmadzic VS, Stimac D, Sustic A. Effect of pyloric dilatation on gastric emptying after pylorus-preserving pancreaticoduodenectomy. Hepatogastroenterology 2011;58:2144-2147.PubMedCrossRefGoogle Scholar
  31. 31.
    Manes K, Lytras D, Avgerinos C, Delis S, Dervenis C. Antecolic gastrointestinal reconstruction with pylorus dilatation. Does it improve delayed gastric emptying after pylorus-preserving pancreaticoduodenectomy? HPB (Oxford) 2008;10:472-476.CrossRefGoogle Scholar
  32. 32.
    Holt S, Heading RC, Clements JA, Tothill P, Prescott LF. Acetaminophen absorption and metabolism in celiac disease and Crohn’s disease. Clin Pharmacol Ther 1981;30:232-238.PubMedCrossRefGoogle Scholar
  33. 33.
    Steinert RE, Poller B, Castelli MC, Friedman K, Huber AR, Drewe J, Beglinger C. Orally administered glucagon-like peptide-1 affects glucose homeostasis following an oral glucose tolerance test in healthy male subjects. Clin Pharmacol Ther 2009;86:644-650.PubMedCrossRefGoogle Scholar
  34. 34.
    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007;132:2131-2157.PubMedCrossRefGoogle Scholar
  35. 35.
    Niskanen L, Uusitupa M, Sarlund H, Siitonen O, Paljarvi L, Laakso M. The effects of weight loss on insulin sensitivity, skeletal muscle composition and capillary density in obese non-diabetic subjects. Int J Obes Relat Metab Disord 1996;20:154-160.PubMedGoogle Scholar
  36. 36.
    Salinari S, Bertuzzi A, Guidone C, Previti E, Rubino F, Mingrone G. Insulin sensitivity and secretion changes after gastric bypass in normotolerant and diabetic obese subjects. Ann Surg. 2013;257:462-468.PubMedCrossRefGoogle Scholar
  37. 37.
    Ranganath LR, Beety JM, Morgan LM, Wright JW, Howland R, Marks V. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 1996;38:916-919.PubMedCrossRefGoogle Scholar
  38. 38.
    Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Holst JJ, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int J Obes Relat Metab Disord 2001;25:1206-1214.PubMedCrossRefGoogle Scholar
  39. 39.
    Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 2001;286:921-929.PubMedCrossRefGoogle Scholar
  40. 40.
    Yalniz M, Pour PM. Diabetes mellitus: a risk factor for pancreatic cancer? Langenbecks Arch Surg 2005;390:66-72.PubMedCrossRefGoogle Scholar
  41. 41.
    McWilliams RR, Matsumoto ME, Burch PA, Kim GP, Halfdanarson TR, de Andrade M, Reid-Lombardo K, Bamlet WR. Obesity adversely affects survival in pancreatic cancer patients. Cancer 2010;116:5054-5062.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Becker S, Dossue L, Kaaks R: Obesity related hyperinsulinemia and hyperglycemia and cancer development. Arch Physiol Biochem 2009; 115: 86-96.PubMedCrossRefGoogle Scholar
  43. 43.
    Butler PC, Matveyenko AV, Dry S, Bhushan A, Elashoff R. Glucagon-like peptide-1 therapy and the exocrine pancreas: innocent bystander or friendly fire? Diabetologie 2010; 53: 1-6.Google Scholar
  44. 44.
    Gale EAM. GLP-1-based therapies and the exocrine pancreas: more light, or just more heat? Diabetes 2012; 61: 986-988.PubMedCrossRefGoogle Scholar
  45. 45.
    Gale EAM. GLP-1 based agents and acute pancreatitis. BMJ 2013; 346:f1304.CrossRefGoogle Scholar
  46. 46.
    Labuzek K, Kozlowski M, Szkudlapski D, Sikorska P, Kozlowska M, Okopien B. Incretin-based therapies in the treatment of type 2 diabetes—more than meets the eye? Eur J Int Med 2013; 24: 207-212.CrossRefGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2013

Authors and Affiliations

  • Stefan Harmuth
    • 1
  • Marlene Wewalka
    • 2
  • Jens Juul Holst
    • 3
  • Romina Nemecek
    • 1
  • Sabine Thalhammer
    • 4
  • Rainer Schmid
    • 5
  • Klaus Sahora
    • 1
  • Michael Gnant
    • 1
  • Johannes Miholić
    • 1
    Email author
  1. 1.Department of Surgery, Allgemeines Krankenhaus (AKH)Medical University of ViennaViennaAustria
  2. 2.Department of Internal Medicine III, Gastroenterology and HepatologyMedical University of ViennaViennaAustria
  3. 3.Department of Medical Physiology, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of Surgery, Kaiser Franz-Josef-Krankenhaus (KFJ)ViennaAustria
  5. 5.Institute of Medical and Chemical Laboratory DiagnosticsMedical University of ViennaViennaAustria

Personalised recommendations