Skip to main content
Log in

Personalized Medicine in Pancreatic Cancer: Prognosis and Potential Implications for Therapy

  • SSAT State-of-the-Art Conference
  • Published:
Journal of Gastrointestinal Surgery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Unpublished data.

References

  1. Jemal, A., et al. Cancer statistics, 2010. CA: A Cancer Journal for Clinicians 2010; 60(5):277–300.

    Article  Google Scholar 

  2. Stathis, A., et al. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 2010; 7(3):163–72.

    Article  PubMed  CAS  Google Scholar 

  3. Yachida, S., et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467(7319):1114–7.

    Article  PubMed  CAS  Google Scholar 

  4. Goggins, M. Identifying molecular markers for the early detection of pancreatic neoplasia. Seminars in oncology 2007; 34(4):303–10.

    Article  PubMed  CAS  Google Scholar 

  5. Embuscado, E.E., et al. Immortalizing the complexity of cancer metastasis: Genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biology & Therapy 2005; 4(5):548–54.

    Article  CAS  Google Scholar 

  6. Iacobuzio-Donahue, C.A., et al. Dpc4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 2009; 27(11):1806–13.

    Article  PubMed  CAS  Google Scholar 

  7. Wilentz, R.E., et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of dpc4 inactivation. The American Journal of Pathology 2000; 156(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  8. Blackford, A., et al. Smad4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res 2009; 15(14):4674–9.

    Article  PubMed  CAS  Google Scholar 

  9. Massague, J. Tgfbeta in cancer. Cell 2008; 134(2):215–30.

    Article  PubMed  CAS  Google Scholar 

  10. Dai, J.L., et al. G1 cell cycle arrest and apoptosis induction by nuclear smad4/dpc4: phenotypes reversed by a tumorigenic mutation. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(4):1427–32.

    Article  PubMed  CAS  Google Scholar 

  11. Dai, J.L., et al. Transforming growth factor-beta responsiveness in dpc4/smad4-null cancer cells. Molecular Carcinogenesis 1999; 26(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  12. Yue, J., et al. Activation of the mitogen-activated protein kinase pathway by transforming growth factor-beta. Methods in Molecular Biology (Clifton, NJ) 2000; 142:125–31.

    Google Scholar 

  13. Yu, L., et al. Tgf-beta receptor-activated p38 map kinase mediates smad-independent tgf-beta responses. The EMBO Journal 2002; 21(14):3749–59.

    Article  PubMed  CAS  Google Scholar 

  14. Derynck, R., et al. Smad-dependent and smad-independent pathways in tgf-beta family signalling. Nature 2003; 425(6958):577–84.

    Article  PubMed  CAS  Google Scholar 

  15. Moustakas, A., et al. Non-smad tgf-beta signals. Journal of Cell Science 2005; 118(Pt 16):3573–84.

    Article  PubMed  CAS  Google Scholar 

  16. Bakin, A.V., et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. The Journal of Biological Chemistry 2000; 275(47):36803–10.

    Article  PubMed  CAS  Google Scholar 

  17. Gordon, K.J., et al. Loss of type iii transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis 2008; 29(2):252–62.

    Article  PubMed  CAS  Google Scholar 

  18. Jungert, K., et al. Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res 2007; 67(4):1563–70.

    Article  PubMed  CAS  Google Scholar 

  19. Kern, S.E., et al. The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. The Journal of Pathology; 223(2):295–306.

  20. Ko, A.H., et al. Radiation therapy in operable and locally advanced pancreatic cancer. J Natl Compr Canc Netw 2010; 8(9):1022–31.

    PubMed  CAS  Google Scholar 

  21. Gutt, R., et al. The role of radiotherapy in locally advanced pancreatic carcinoma. Nat Rev Gastroenterol Hepatol 2010; 7(8):437–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Iacobuzio-Donahue.

Additional information

This paper was originally presented as part of the SSAT State-of-the-Art Conference, Personalized Medicine in Gastrointestinal Cancer: Potential Applications in Clinical Practice, at the SSAT 52nd Annual Meeting, May 2011, in Chicago, IL, USA. The other articles presented in the conference were Riall TS, Introduction: Personalized Medicine in Gastrointestinal Cancer; Chao C, Overview of Personalized Medicine in GI Cancers; Carethers JM, Proteomics, Genomics and Molecular Biology in the Personalized Treatment of Colorectal Cancer; and DeMatteo RP, Personalized Therapy: Prognostic Factors in Gastrointestinal Stromal Tumor (GIST).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacobuzio-Donahue, C.A. Personalized Medicine in Pancreatic Cancer: Prognosis and Potential Implications for Therapy. J Gastrointest Surg 16, 1651–1652 (2012). https://doi.org/10.1007/s11605-012-1943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-012-1943-1

Keywords

Navigation