Skip to main content

Advertisement

Log in

Dimethylamino Parthenolide Enhances the Inhibitory Effects of Gemcitabine in Human Pancreatic Cancer Cells

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Introduction

Gemcitabine is standard treatment for pancreatic cancer but has limited clinical benefit due to chemoresistance. Nuclear factor-kappaB (NF-κB) can promote chemoresistance and is therefore an attractive therapeutic target. We hypothesize that NF-κB suppression with the novel, orally bioavailable inhibitor dimethylamino parthenolide (DMAPT) will sensitize pancreatic cancer cells to gemcitabine.

Methods

BxPC-3, PANC-1, and MIA PaCa-2 human pancreatic cancer cell lines were treated with gemcitabine and/or DMAPT. Effects on the NF-κB pathway were determined by electrophoretic mobility shift assay, ELISA, or Western blot. Proliferation and apoptosis were measured by cell counts and ELISA, respectively. The effect of gemcitabine in vivo was determined using a MIA PaCa-2 heterotopic xenograft model.

Results

Gemcitabine induced NF-κB activity in BxPC-3, PANC-1, and MIA PaCa-2 cells and decreased the level of the NF-κB inhibitor IκBα in BxPC-3 and PANC-1 cells. DMAPT prevented the gemcitabine-induced activation of NF-κB. The combination of DMAPT/gemcitabine inhibited pancreatic cancer cell growth more than either agent alone. Gemcitabine also induced intratumoral NF-κB activity in vivo.

Conclusions

DMAPT enhanced the anti-proliferative effects of gemcitabine in association with NF-κB suppression in pancreatic cancer cells in vitro. Furthermore, gemcitabine induced NF-κB activity in vivo, thus supporting the evaluation of NF-κB-targeted agents to complement gemcitabine-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Cancer Facts & Figures 2010, American Cancer Society. 2010.

  3. Schmidt CM, Powell ES, Yiannoutsos CT, Howard TJ, Wiebke EA, Wiesenauer CA,Baumgardner JA, Cummings OW, Jacobson LE, Broadie TA, Canal DF, Goulet RJ, Jr., Curie EA, Cardenes H, Watkins JM, Loehrer PJ, Lillemoe KD, Madura JA. Pancreaticoduodenectomy: a 20-year experience in 516 patients. Arch Surg 2004;139:718–725; discussion 725–717.

    Article  PubMed  Google Scholar 

  4. Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams RA, Sauter PK, Coleman J, Hruban RH, Lillemoe KD. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 2000;4:567–579.

    Article  PubMed  CAS  Google Scholar 

  5. Yeo CJ, Cameron JL, Lillemoe KD, Sitzmann JV, Hruban RH, Goodman SN, Dooley WC, Coleman J, Pitt HA. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg 1995;221:721–731; discussion 731–723.

    Article  PubMed  CAS  Google Scholar 

  6. Burris HA, 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvements in survival and clinical benefit with gemcitabine as first- line therapy for patients with advanced pancreas cancer: a randomized trial [see comments]. J Clin Oncol 1997;15:2403–2413.

    PubMed  CAS  Google Scholar 

  7. Lin YC, Brown K, Siebenlist U. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc Natl Acad Sci U S A 1995;92:552–556.

    Article  PubMed  CAS  Google Scholar 

  8. Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR, Schafer H. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 2003;22:3243–3251.

    Article  PubMed  CAS  Google Scholar 

  9. Muerkoster S, Arlt A, Witt M, Gehrz A, Haye S, March C, Grohmann F, Wegehenkel K, Kalthoff H, Folsch UR, Schafer H. Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer 2003;104:469–476.

    Article  PubMed  CAS  Google Scholar 

  10. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factorkappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999;5:119–127.

    PubMed  CAS  Google Scholar 

  11. Holcomb B, Yip-Schneider M, Schmidt CM. The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 2008;36:225–235.

    Article  PubMed  CAS  Google Scholar 

  12. Yip-Schneider MT, Nakshatri H, Sweeney CJ, Marshall MS, Wiebke EA, Schmidt CM. Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells. Mol Cancer Ther 2005;4:587–594.

    Article  PubMed  CAS  Google Scholar 

  13. Neelakantan S, Nasim S, Guzman ML, Jordan CT, Crooks PA. Aminoparthenolides as novel anti-leukemic agents: Discovery of the NF-kappaB inhibitor, DMAPT (LC-1). Bioorg Med Chem Lett 2009;19:4346–4349.

    Article  PubMed  CAS  Google Scholar 

  14. Yip-Schneider MT, Wu H, Njoku V, Ralstin M, Holcomb B, Crooks PA, Neelakantan S, Sweeney CJ, Schmidt CM. Effect of celecoxib and the novel anti-cancer agent, dimethylaminoparthenolide, in a developmental model of pancreatic cancer. Pancreas 2008;37:e45-53.

    Article  PubMed  CAS  Google Scholar 

  15. Yip-Schneider MT, Wu H, Ralstin M, Yiannoutsos C, Crooks PA, Neelakantan S, Noble S, Nakshatri H, Sweeney CJ, Schmidt CM. Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo. Mol Cancer Ther 2007;6:1736–1744.

    Article  PubMed  CAS  Google Scholar 

  16. Holcomb B, Yip-Schneider MT, Matos JM, Dixon J, Kennard J, Mahomed J, Shanmugam R, Sebolt-Leopold J, Schmidt CM. Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based molecular targeting strategies. J Gastrointest Surg 2008;12:288–296.

    Article  PubMed  Google Scholar 

  17. Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH, Xue DB, Bai XW, Sun B. Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 2010;293:99–108.

    Article  PubMed  CAS  Google Scholar 

  18. Fahy BN, Schlieman MG, Virudachalam S, Bold RJ. Inhibition of AKT abrogates chemotherapy-induced NF-kappaB survival mechanisms: implications for therapy in pancreatic cancer. J Am Coll Surg 2004;198:591–599.

    Article  PubMed  Google Scholar 

  19. Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, Pandey MK, Gelovani J, Krishnan S, Guha S, Aggarwal BB. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 2010;127:257–268.

    PubMed  CAS  Google Scholar 

  20. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007;110:4427–4435.

    Article  PubMed  CAS  Google Scholar 

  21. Shanmugam R, Kusumanchi P, Appaiah H, Cheng L, Crooks P, Neelakantan S, Peat T, Klaunig J, Matthews W, Nakshatri H, Sweeney CJ. A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-kappaB and generating reactive oxygen species. Int J Cancer 2010.

  22. Shanmugam R, Kusumanchi P, Cheng L, Crooks P, Neelakantan S, Matthews W, Nakshatri H, Sweeney CJ. A water-soluble parthenolide analogue suppresses in vivo prostate cancer growth by targeting NFkappaB and generating reactive oxygen species. Prostate 2010;70:1074–1086.

    Article  PubMed  CAS  Google Scholar 

  23. Ramachandran P, Yip-Schneider, MT, Schmidt, CM. Natural and synthetic alpha,betaunsaturated carbonyls for NF-kB inhibition. Future Medicinal Chemistry 2009;1:177–198.

    Google Scholar 

  24. Ramachandran PV, Pratihar D, Nair HN, Walters M, Smith S, Yip-Schneider MT, Wu H, Schmidt CM. Tailored alpha-methylene-gamma-butyrolactones and their effects on growth suppression in pancreatic carcinoma cells. Bioorg Med Chem Lett 2010.

Download references

Acknowledgments

This work was funded by the Veterans Affairs (VA) Young Investigator Award (C.M.S.) and American Cancer Society grant number RSG-06-267-01-CCE (C.M.S. and M.Y-S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele T. Yip-Schneider or C. Max Schmidt.

Additional information

Bryan K. Holcomb and Michele T. Yip-Schneider contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcomb, B.K., Yip-Schneider, M.T., Waters, J.A. et al. Dimethylamino Parthenolide Enhances the Inhibitory Effects of Gemcitabine in Human Pancreatic Cancer Cells. J Gastrointest Surg 16, 1333–1340 (2012). https://doi.org/10.1007/s11605-012-1913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-012-1913-7

Keywords

Navigation