Skip to main content
Log in

Immunonutrition with Long-Chain Fatty Acids Prevents Activation of Macrophages in the Gut Wall

  • ORIGINAL ARTICLE
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Background

Immune cells and inflammatory mediators are released from the gastrointestinal tract into the mesenteric lymph during sepsis causing distant organ dysfunction. Recently, it was demonstrated that macrophages in the gut wall are controlled by the vagus nerve, the so-called cholinergic anti-inflammatory pathway.

Aim

This study aims to investigate whether an enteral diet with lipid prevents the activation of leukocytes in the gut wall.

Methods

Mesenteric lymph was obtained from rats, receiving an enteral infusion of glucose or glucose + lipid before and after lipopolysaccharide (LPS) injection. Immune cells in mesenteric lymph were analyzed with fluorescence-activated cell sorting before and after LPS injection. Mesenteric lymph leukocytes from rats receiving enteral glucose with or without lipid were stimulated in vitro with LPS and tumor necrosis factor (TNF)α was measured in the supernatant.

Results

The release of macrophages from the gut during sepsis was not significantly different in animals enterally treated with glucose or lipid. However, the release of TNFα from mesenteric lymph leukocytes after in vitro LPS stimulation was more than 3-fold higher in the glucose group compared to the lipid-treated group.

Conclusions

During sepsis, activated macrophages are released from the gut into mesenteric lymph. However, an enteral diet with lipid is able to suppress the inflammatory cytokine release from mesenteric lymph leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reinhart K, Brunkhorst F.M., Bone H.G., Gerlach H., Gründling M., Kreymann G., Kujath P., Marggraf G., Mayer K., Meier-Hellmann A., Peckelsen C., Putensen C., Quintel M., Ragaller M., Rossaint R., Stüber F., Weiler N., Welte T., Werdan K. Diagnose und Therapie der Sepsis. Med Welt 2006; 57:23–38.

    Google Scholar 

  2. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 2008; 34:17–60.

    Article  PubMed  Google Scholar 

  3. Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock 1998; 9:1–11.

    Article  PubMed  CAS  Google Scholar 

  4. Glatzle J, Kasparek MS, Mueller MH, Binder F, Meile T, Kreis ME, Konigsrainer A, Steurer W. Enteral immunonutrition during sepsis prevents pulmonary dysfunction in a rat model. J Gastrointest Surg 2007; 11:719–724.

    Article  PubMed  Google Scholar 

  5. Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun 2005; 19:493–499.

    Article  PubMed  CAS  Google Scholar 

  6. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405:458–462.

    Article  PubMed  CAS  Google Scholar 

  7. Raybould HE. Does your gut taste? Sensory transduction in the gastrointestinal tract. News Physiol Sci 1998; 13:275–280.

    PubMed  CAS  Google Scholar 

  8. Glatzle J, Wang Y, Adelson DW, Kalogeris TJ, Zittel TT, Tso P, Wei JY, Raybould HE. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat. J Physiol 2003; 550:657–664.

    Article  PubMed  CAS  Google Scholar 

  9. Glatzle J, Beckert S, Kasparek MS, Mueller MH, Mayer P, Meile T, Konigsrainer A, Steurer W. Olive oil is more potent than fish oil to reduce septic pulmonary dysfunctions in rats. Langenbecks Arch Surg 2007; 392:323–329.

    Article  PubMed  Google Scholar 

  10. Tracey KJ. Fat meets the cholinergic antiinflammatory pathway. J Exp Med 2005; 202:1017–1021.

    Article  PubMed  CAS  Google Scholar 

  11. Leite MS, Pacheco P, Gomes RN, Guedes AT, Castro-Faria-Neto HC, Bozza PT, Koatz VL. Mechanisms of increased survival after lipopolysaccharide-induced endotoxic shock in mice consuming olive oil-enriched diet. Shock 2005; 23:173–178.

    Article  PubMed  CAS  Google Scholar 

  12. Stenson WF. Gastrointestinal inflammation. In Yamada T. (ed). Textbook of gastroenterology, third edition. New York: Lippincott; 1999:123–140.

    Google Scholar 

  13. Deitch EA, Rutan R, Waymack JP. Trauma, shock, and gut translocation. New Horiz 1996; 4:289–299.

    PubMed  CAS  Google Scholar 

  14. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421:384–388.

    Article  PubMed  CAS  Google Scholar 

  15. Kessler W, Traeger T, Westerholt A, Neher F, Mikulcak M, Muller A, Maier S, Heidecke CD. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbecks Arch Surg 2006; 391:83–87.

    Article  PubMed  Google Scholar 

  16. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 2005; 202:1023–1029.

    Article  PubMed  CAS  Google Scholar 

  17. Johnston GR, Webster NR. Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth 2009; 102:453–462.

    Article  PubMed  CAS  Google Scholar 

  18. Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H. Role of Toll-like receptors in the development of sepsis. Shock 2008; 29:315–321.

    PubMed  CAS  Google Scholar 

  19. Cairns B, Maile R, Barnes CM, Frelinger JA, Meyer AA. Increased Toll-like receptor 4 expression on T cells may be a mechanism for enhanced T cell response late after burn injury. J Trauma 2006; 61:293–298.

    Article  PubMed  Google Scholar 

  20. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH, Hudson L, Lin X, Patel N, Johnson SM, Chavan S, Goldstein RS, Czura CJ, Miller EJ, Al Abed Y, Tracey KJ, Pavlov VA. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med 2008; 14:567–574.

    Article  PubMed  CAS  Google Scholar 

  21. Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, Levi J, Parrish WR, Rosas-Ballina M, Czura CJ, Larosa GJ, Miller EJ, Tracey KJ, Al Abed Y. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 2007; 35:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  22. Razani-Boroujerdi S, Boyd RT, Davila-Garcia MI, Nandi JS, Mishra NC, Singh SP, Pena-Philippides JC, Langley R, Sopori ML. T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. J Immunol 2007; 179:2889–2898.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from FORTÜNE 1843-0-0.

Conflict of Interest

We do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Glatzle.

Additional information

Friederike Eisner and Petra Jacob contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisner, F., Jacob, P., Frick, JS. et al. Immunonutrition with Long-Chain Fatty Acids Prevents Activation of Macrophages in the Gut Wall. J Gastrointest Surg 15, 853–859 (2011). https://doi.org/10.1007/s11605-011-1431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-011-1431-z

Keywords

Navigation