Skip to main content
Log in

PinX1 Inhibits Telomerase Activity in Gastric Cancer Cells Through Mad1/c-Myc Pathway

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Introduction

The aim of this study was to investigate the role of Mad1/c-Myc in telomerase regulation in gastric cancer cells in order to gain insight into telomerase activity and to evaluate PinX1 as a putative inhibitor of gastric cancer.

Methods

PinX1 and PinX1siRNA eukaryotic expression vectors were constructed by recombinant technology and transfected into gastric carcinoma cells using Lipofectamine™ 2000. Telomerase activity was measured by the telomeric repeat amplification protocol. Apoptosis of gastric cancer cells was analyzed by flow cytometry and transmission electron microscopy. Reverse transcription-polymerase chain reaction and Western blotting were used to assess the expression levels of PinX1 and Mad1/c-Myc.

Results

We found that PinX1-negative gastric cancer cells showed significantly higher telomerase activity than did the PinX1-postive cells. PinX1-transfection reduced telomerase activity in PinX1-negative gastric cancer cells and exhibited an upregulation of Mad1 and downregulation of c-Myc expression. Pinx1 RNAi treatment led to downregulation of Mad1 and upregulation of c-Myc.

Conclusion

Suppression of telomerase activity mediated by PinX1 is involved in the Mad1/c-Myc pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feng J, Funk W.D, Wang S.S, Weinrich S.L, Avilion A.A, Chiu C.P, Adams R.R, Chang E, Allsopp R.C, Yu J, Le S, West M.D; Harley C.B, Andrews W.H, Greider C.W, Villeponteau B. The RNA component of human telomerase. Science. 1995; 269: 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura T.M, Morin G.B, Chapman K.B, Weinrich S.L, Andrews W.H, Lingner J, Harley C.B, Cech T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997; 277: 955–959.

    Article  CAS  PubMed  Google Scholar 

  3. Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass M.B, Arruda I, Robinson M.O. A mammalian telomerase-associated protein. Science. 1997; 275: 973–977.

    Article  CAS  PubMed  Google Scholar 

  4. Counter C.M, Meyerson M, Eaton E.N, Ellisen L.W, Caddle S.D, Haber D.A, Weinberg R.A. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene. 1998; 16: 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  5. Meyerson M, Counter C.M, Eaton E.N, Ellisen L.W, Steiner P, Caddle S.D, Ziaugra L, Beijersbergen R.L, Davidoff M.J, Liu Q, Bacchetti S, Haber D.A, Weinberg R.A. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997; 90: 785–795.

    Article  CAS  PubMed  Google Scholar 

  6. Poole J.C, Andrews L.G, Tollefsbol T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT).Gene. 2001; 269: 1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Bièche I, Noguès C, Paradis V, Olivi M, Bedossa P, Lidereau R, Vidaud M. Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res. 2000; 6: 452–459.

    PubMed  Google Scholar 

  8. Shay J.W, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997; 33: 787–791.

    Article  CAS  PubMed  Google Scholar 

  9. Kim N.W, Piatyszek M.A, Prowse K.R, Harley C.B, West M.D, Ho P.L, Coviello G.M, Wright W.E, Weinrich S.L, Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  10. Quante M, Heeg S, Werder A, Goessel G, Fulda C, Doebele M, Nakagawa H, Beijersbergen R, Blum H.E, Opitz O.G. Differential transcriptional regulation of human telomerase in a cellular model representing important genetic alterations in esophageal squamous carcinogenesis. Carcinogenesis. 2005; 26: 1879–1889.

    Article  CAS  PubMed  Google Scholar 

  11. Yang S.M, Fang D.C, Luo Y.H, Lu R, Battle P.D, Liu W.W. Alterations of telomerase activity and terminal restriction fragment in gastric cancer and its premalignant lesions. to gain an insight into the biology of telomerase. J Gastroenterol Hepatol. 2001; 16: 876–882.

    Article  CAS  PubMed  Google Scholar 

  12. Fang D.C, Young J, Luo Y.H, Lu R, Jass J. Detection of telomerase activity in biopsy samples of colorectal cancer. J Gastroenterol Hepatol. 1999; 14: 328–332.

    Article  CAS  PubMed  Google Scholar 

  13. Yang S.M, Fang D.C, Yang J.L, Chen L, Luo Y.H, Liang G.P. Antisense human telomerase reverse transcriptase could partially reverse malignant phenotypes of gastric carcinoma cell line in vitro. Eur J Cancer Prev. 2008; 17: 209–217.

    Article  CAS  PubMed  Google Scholar 

  14. Beitzinger M, Oswald C, Beinoraviciute-Kellner R, Stiewe T. Regulation of telomerase activity by the p53 family member p73. Oncogene. 2006; 25: 813–826.

    Article  CAS  PubMed  Google Scholar 

  15. Ducrest A.L, Szutorisz H, Lingner J, Nabholz M. Regulation of the human telomerase reverse transcriptase gene. Oncogene. 2002; 21: 541–552.

    Article  CAS  PubMed  Google Scholar 

  16. Kanaya T, Kyo S, Hamada K, Takakura M, Kitagawa Y, Harada H, Inoue M. Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin Cancer Res. 2000; 6: 1239–1247.

    CAS  PubMed  Google Scholar 

  17. Günes C, Lichtsteiner S, Vasserot A.P, Englert C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res. 2000; 60: 2116–2121.

    PubMed  Google Scholar 

  18. Zhou X.Z, Lu K.P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell. 2001; 107: 347–359.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Bai Y.X, Ma H.H, Feng F, Jin R, Wang Z.L, Lin J, Sun S.P, Yang P, Wang X.X, Huang P.T, Huang C.F, Peng Y, Chen Y.C, Kung H.F, Huang J.J. Silencing PinX1 compromises telomere length maintenance as well as tumorigenicity in telomerase-positive human cancer cells. Cancer Res. 2009; 69: 75–83.

    Article  CAS  PubMed  Google Scholar 

  20. Kondo T, Oue N, Mitani Y, Kuniyasu H, Noguchi T, Kuraoka K, Nakayama H, Yasui W. Loss of heterozygosity and histone hypoacetylation of the PinX1 gene are associated with reduced expression in gastric carcinoma. Oncogene. 2005; 24: 157–164.

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Wu L, Liu C, Xu L, Li D, Li J.C. The correlation of genetic instability of PINX1 gene to clinico-pathological features of gastric cancer in the Chinese population. J Cancer Res Clin Oncol. 2009; 135: 431–437.

    Article  CAS  PubMed  Google Scholar 

  22. Wu K.J, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999; 21: 220–224.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Xie L.Y, Allan S, Beach D, Hannon G.J. Myc activates telomerase. Genes Dev. 1998; 12: 1769–1774.

    Article  CAS  PubMed  Google Scholar 

  24. Hu X, Yu N, Fu L, Su W, Huang G, Wu Y, Huang H, Huang H. Downregulation of human telomerase reverse transcriptase through anti-C-myc siRNA in human colon cancer Colo 320 cells. Nucleotides Nucleic Acids. 2009; 28: 1–11.

    Article  CAS  Google Scholar 

  25. Lin S.Y, Elledge S.J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell. 2003; 113: 881–889.

    Article  CAS  PubMed  Google Scholar 

  26. Xu D, Popov N, Hou M, Wang Q, Björkholm M, Gruber A, Menkel AR, Henriksson M. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci U S A. 2001; 98: 3826–3831.

    Article  CAS  PubMed  Google Scholar 

  27. Hahn W.C, Weinberg R.A. Rules for making human tumor cells. N Engl J Med. 2002; 347: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan D, Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  29. Banik S.S, Counter C.M.Characterization of Interactions between PinX1 and Human Telomerase Subunits hTERT and hTR. J Biol Chem. 2004; 279: 51745–51748.

    Article  CAS  PubMed  Google Scholar 

  30. Horikawa I, Barrett J.C. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis. 2003; 24: 1167–1176.

    Article  CAS  PubMed  Google Scholar 

  31. Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M, Ariga H, Inoue M. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res. 2000; 28: 669–677.

    Article  CAS  PubMed  Google Scholar 

  32. Greenberg R.A, O'Hagan R.C, Deng H, Xiao Q, Hann S.R, Adams R.R, Lichtsteiner S, Chin L, Morin G.B, DePinho R.A. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation Oncogene. 1999; 18: 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  33. Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M, Inoue M. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 1999; 59: 551–557.

    CAS  PubMed  Google Scholar 

  34. Oh S, Song Y.H, Kim U.J, Yim J, Kim T.K. In vivo and in vitro analyses of Myc for differential promoter activities of the human telomerase (hTERT) gene in normal and tumor cells. Biochem Biophys Res Commun. 1999; 263: 361–365.

    Article  CAS  PubMed  Google Scholar 

  35. Flores I, Evan G, Blasco M.A. Genetic Analysis of Myc and Telomerase Interactions In Vivo.Molecular and Cellular Biology. 2006; 26: 6130–6138.

    Article  CAS  PubMed  Google Scholar 

  36. Nam C.W, Park N.H, Park B.R, Shin J.W, Jung S.W, Na Y.W, Seo J.H. Mitotic checkpoint gene MAD1 in hepatocellular carcinoma is associated with tumor recurrence after surgical resection. J Surg Oncol. 2008; 97: 567–571.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-chun Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Hb., Wang, Xw., Zhou, G. et al. PinX1 Inhibits Telomerase Activity in Gastric Cancer Cells Through Mad1/c-Myc Pathway. J Gastrointest Surg 14, 1227–1234 (2010). https://doi.org/10.1007/s11605-010-1253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-010-1253-4

Keywords

Navigation