Skip to main content

Advertisement

Log in

Esophagus Tissue Engineering: Hybrid Approach with Esophageal Epithelium and Unidirectional Smooth Muscle Tissue Component Generation In Vitro

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Purpose

The aim of this study was to engineer the two main components of the esophagus in vitro: (a) esophageal epithelium and (b) smooth muscle tissue. Furthermore, (a) survivability of esophageal epithelial cells (EEC) on basement membrane matrix (BMM)-coated scaffolds and (b) oriented smooth muscle tissue formation on unidirectional BMM-coated collagen scaffolds was investigated.

Methods

Both EEC and smooth muscle cells (SMC) were sourced from Sprague–Dawley rats. The EEC were maintained in vitro and seeded onto BMM-coated 2-D collagen scaffolds. Similarly, smooth muscle cells were obtained using an explants technique and seeded on unidirectional 3-D BMM-coated collagen scaffolds. Cell–polymer constructs for EEC and SMC were maintained in vitro for 8 weeks.

Results

Protocols to obtain higher yield of EEC were established. EEC formed a layer of differentiated epithelium after 14 days. EEC survivability on polymers was observed up to 8 weeks. Unidirectional smooth muscle tissue strands were successfully engineered.

Conclusion

Esophageal epithelium generation, survivability of EEC on BMM-coated scaffolds, and engineering of unidirectional smooth muscle strands were successful in vitro. The hybrid approach of assembling individual tissue components in vitro using BMM-coated scaffolds and later amalgamating them to form composite tissue holds promises in the tissue engineering of complex organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Clark DC. Esophageal atresia and tracheoesophageal fistula. Am Fam Physician. 1999;59:910–916.

    PubMed  CAS  Google Scholar 

  2. Cusick EL, Batchelor AA, Spicer RD. Development of a technique for jejunal interposition in long-gap esophageal atresia. J Pediatr Surg 1993;28:990–994. doi:10.1016/0022-3468(93)90499-B.

    Article  PubMed  CAS  Google Scholar 

  3. Raffensperger JG, Kuck SR, Reynolds M, Schwartz D. Intestinal bypass of the esophagus. J Pediatr Surg 1996;31:38–46. doi:10.1016/S0022-3468(96)90316-4.

    Article  PubMed  CAS  Google Scholar 

  4. Spitz L, Ruangtrakool R. Esophageal substitution. Semin Pediatr Surg 1998;7:130–133.

    PubMed  CAS  Google Scholar 

  5. Cauchi JA, Buick RG, Gornall P, Simms MH, Parikh DH. Oesophageal substitution with free and pedicled jejunum: short- and long-term outcomes. Pediatr Surg Int 2007;23:11–19. doi:10.1007/s00383-006-1770-0.

    Article  PubMed  CAS  Google Scholar 

  6. Arul GS, Parikh D. Oesophageal replacement in children. Ann R Coll Surg Engl 2008;90:7–12. doi:10.1308/003588408X242222.

    Article  PubMed  CAS  Google Scholar 

  7. Spitz L. Esophageal atresia—lessons I have learned in a 40-year experience. J Pediatr Surg 2006;41:1635–1640. doi:10.1016/j.jpedsurg.2006.07.004.

    Article  PubMed  Google Scholar 

  8. Saxena AK, Kofler K, Ainoedhofer H, Kuess A, Höllwarth ME. Complexity of approach and demand for esophagus tissue engineering. Tissue Eng Part A 2008;14:829.

    Google Scholar 

  9. Kajitani M, Wadia Y, Hinds MT, Teach J, Schwartz KR, Gregory KW. Successful repair of esophageal injury using an elastin based biomaterial patch. ASAIO J 2001;47:342–345. doi:10.1097/00002480-200107000-00009.

    Article  PubMed  CAS  Google Scholar 

  10. Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 2000;35:1097–1103. doi:10.1053/jpsu.2000.7834.

    Article  PubMed  CAS  Google Scholar 

  11. Takimoto Y, Nakamura T, Yamamoto Y, Kiyotani T, Teramachi M, Shimizu Y. The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent. J Thorac Cardiovasc Surg 1998;116:98–106. doi:10.1016/S0022-5223(98)70247-8.

    Article  PubMed  CAS  Google Scholar 

  12. Isch JA, Engum SA, Ruble CA, Davis MM, Grosfeld JL. Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg 2001;36:266–268. doi:10.1053/jpsu.2001.20685.

    Article  PubMed  CAS  Google Scholar 

  13. Grikscheit T, Ochoa ER, Srinivasan A, Gaissert H, Vacanti JP. Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg 2003;126:537–544. doi:10.1016/S0022-5223(03)00032-1.

    Article  PubMed  Google Scholar 

  14. Natsume T, Ike O, Okada T, Shimizu Y, Ikada Y, Tamura K. Experimental studies of a hybrid artificial esophagus combined with autologous mucosal cells. ASAIO Trans 1990;36:M435–437.

    PubMed  CAS  Google Scholar 

  15. Sato M, Ando N, Ozawa S, Miki H, Kitajima M. An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J 1994;40:M389–392. doi:10.1097/00002480-199407000-00028.

    Article  PubMed  CAS  Google Scholar 

  16. Miki H, Ando N, Ozawa S, Sato M, Hayashi K, Kitajima M. An artificial esophagus constructed of cultured human esophageal epithelial cells, fibroblasts, polyglycolic acid mesh, and collagen. ASAIO J 1999;45:502–508. doi:10.1097/00002480-199909000-00025.

    Article  PubMed  CAS  Google Scholar 

  17. Oda D, Savard CE, Eng L, Sekijima J, Haigh G, Lee SP. Reconstituted human oral and esophageal mucosa in culture. In Vitro Cell Dev Biol Anim 1998;34:46–52. doi:10.1007/s11626-998-0052-7.

    Article  PubMed  CAS  Google Scholar 

  18. Saxena AK, Ainoedhofer H, Höllwarth ME. Esophagus tissue engineering: In-vitro generation of esophageal epithelial cell sheets and viabilty on scaffold. J Pediatr Surg. In press.

  19. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003;30:256–268. doi:10.1016/S1046-2023(03)00032-X.

    Article  PubMed  CAS  Google Scholar 

  20. Biederer T, Scheiffele P. Mixed-culture assays for analyzing neuronal synapse formation. Nat Protocols 2007;2:670–676. doi:10.1038/nprot.2007.92.

    Article  CAS  Google Scholar 

  21. McGuire PG, Orkin RW. Isolation of rat aortic endothelial cells by primary explant techniques and their phenotypic modulation by defined substrata. Lab Invest 1987;57:94–105.

    PubMed  CAS  Google Scholar 

  22. Maeshima Y, Manfredi M, Reimer C, Holthaus KA, Hopfer H, Chandamuri BR, Kharbanda S, Kalluri R. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001;276:15240–15248. doi:10.1074/jbc.M007764200.

    Article  PubMed  CAS  Google Scholar 

  23. Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA 2006;103:855–860. doi:10.1073/pnas.0510412103.

    Article  PubMed  CAS  Google Scholar 

  24. Saxena AK, Ainoedhofer H, Baumann P, Kristler M, Höllwarth ME. In-vitro investigation of esophageal cell organization and collagen scaffold interaction. Tissue Eng Part A 2008;14:747.

    Google Scholar 

  25. Beckstead BL, Pan S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 2005;26:6217–6228. doi:10.1016/j.biomaterials.2005.04.010.

    Article  PubMed  CAS  Google Scholar 

  26. Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 2005;26:2491–2500. doi:10.1016/j.biomaterials.2004.07.011.

    Article  PubMed  CAS  Google Scholar 

  27. Schnell AM, Hoerstrup SP, Zund G, Kolb S, Sodian R, Visjager JF, Grunenfelder J, Suter A, Turina M. Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 2001;49:221–225. doi:10.1055/s-2001-16113.

    Article  PubMed  CAS  Google Scholar 

  28. Lim JI, Yu B, Lee YK. Fabrication of collagen hybridized elastic PLCL for tissue engineering. Biotechnol Lett 2008;30:2085–2090. doi:10.1007/s10529-008-9808-0.

    Article  PubMed  CAS  Google Scholar 

  29. Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater 2006;1:72–80. doi:10.1088/1748-6041/1/2/004.

    Article  PubMed  CAS  Google Scholar 

  30. Duling RR, Dupaix RB, Katsube N, Lannutti J. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering. J Biomech Eng 2008;130:011006. doi:10.1115/1.2838033.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Prof. Wout Feitz (Radboud University Medical Centre, Nijmegen, The Netherlands), Dr. Ingo Heschel (Matricel GmbH, Herzoganrath, Germany) along with Mrs. Anna Kuess (Medical University of Graz, Austria) for the valuable contributions toward this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amulya K. Saxena.

Additional information

This research is funded by the European Union within the 6th Framework Program (EuroSTEC; LSHC-CT-2006–037409).

XXIst International Symposium on Pediatric Surgical Research, 2–4 October 2008, Leipzig, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, A.K., Kofler, K., Ainödhofer, H. et al. Esophagus Tissue Engineering: Hybrid Approach with Esophageal Epithelium and Unidirectional Smooth Muscle Tissue Component Generation In Vitro . J Gastrointest Surg 13, 1037–1043 (2009). https://doi.org/10.1007/s11605-009-0836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-009-0836-4

Keywords

Navigation