Skip to main content

Advertisement

Log in

Glutamate-induced Calcium Transients in Rat Neurons of the Dorsal Motor Nucleus of the Vagus

  • Published:
Journal of Gastrointestinal Surgery

Abstract

The dorsal motor nucleus of the vagus (DMNV) integrates peripheral and central signals and sends efferent output to the gastrointestinal system. Glutamate, the major excitatory neurotransmitter of the central nervous system, causes increases in intracellular calcium in DMNV neurons. The mechanisms by which glutamate activates calcium signaling in the DMNV were examined. DMNV neurons were isolated from neonatal rat brainstem using microdissection and enzymatic digestion. Exposure to glutamate caused intracellular Ca2+ increments in greater than 80% of cells. Removal of extracellular Ca2+ abolished intracellular Ca2+ transients. Kynurenic acid, a nonspecific glutamate receptor antagonist, abolished intracellular Ca2+ transients. Exposure to glutamate while blocking AMPA receptors with GYKI 52466 abolished the Ca2+ response. Exposure to (S)AMPA, an AMPA receptor agonist, caused intracellular Ca2+ increments in 97% of cells. Activation and antagonism of NMDA and kainate receptors produced no changes compared to control experiments. NiCl, a nonspecific Ca2+ channel blocker, abolished intracellular Ca2+ transients. Blocking T-type Ca2+ channels with mibefradil abolished the Ca2+ response in 76% of cells. Blockade of L-type and N-type Ca2+ channels did not affect the Ca2+ response. Glutamate mediates intracellular Ca2+ currents in DMNV neurons via the AMPA receptor and T-type Ca2+ channels, allowing influx of extracellular Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Powley RLBH, Fox EA, Laughton W. The dorsal vagal complex forms a sensory-motor lattice: the circuitry of gastrointestinal reflexes. In Ritter S, RCRaCDB, CRC, ed. Neuroanatomy and physiology of abdominal vagal afferent. Boca Raton, Florida, USA, 1992.

  2. Rogers RC, McTigue DM, Hermann GE. Vagovagal reflex control of digestion: afferent modulation by neural and “endoneurocrine” factors. Am J Physiol 1995;268(1 Pt 1):G1–G10.

    PubMed  CAS  Google Scholar 

  3. Shapiro RE, Miselis RR. The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol 1985;238(4):473–488.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X, Fogel R. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat. Auton Neurosci 2003;103(1–2):19–37.

    Article  PubMed  CAS  Google Scholar 

  5. Grundy D. Mechanoreceptors in the gastrointestinal tract. J Smooth Muscle Res (Nihon Heikatsukin Gakkai kikanshi) 1993;29(2):37–46.

    CAS  Google Scholar 

  6. Liu CY, Xie DP, Liu JZ. Microinjection of glutamate into dorsal motor nucleus of the vagus excites gallbladder motility through NMDA receptor-nitric oxide-cGMP pathway. Neurogastroenterol Motil 2004;16(3):347–353.

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz GJ, Moran TH. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev 1996;20(1):47–56.

    Article  PubMed  CAS  Google Scholar 

  8. Hornby PJ. Receptors and transmission in the brain–gut axis. II. Excitatory amino acid receptors in the brain–gut axis. Am J Physiol 2001;280(6):G1055–G1060.

    CAS  Google Scholar 

  9. Sykes RM, Spyer KM, Izzo PN. Demonstration of glutamate immunoreactivity in vagal sensory afferents in the nucleus tractus solitarius of the rat. Brain Res 1997;762(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Schaffar N, Rao H, Kessler JP, Jean A. Immunohistochemical detection of glutamate in rat vagal sensory neurons. Brain Res 1997;778(2):302–308.

    Article  PubMed  CAS  Google Scholar 

  11. Travagli RA, Gillis RA, Rossiter CD, Vicini S. Glutamate, GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol 1991;260(3 Pt 1):G531–G536.

    PubMed  CAS  Google Scholar 

  12. Simeone TA, Sanchez RM, Rho JM. Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol 2004;19(5):343–360; Discussion 61.

    PubMed  Google Scholar 

  13. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 1986;321(6069):519–522.

    Article  PubMed  CAS  Google Scholar 

  14. Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C. The making of a complex spike: ionic composition and plasticity. Ann NY Acad Sci 2002;978:359–390.

    Article  PubMed  Google Scholar 

  15. Turner DJ, Mulholland MW. Calcium signaling pathways in the enteric nervous system. Int J Surg Investig 1999;1(2):87–97.

    PubMed  CAS  Google Scholar 

  16. Zhang W, Hu Y, Newman EA, Mulholland MW. Serum-free culture of rat postnatal neurons derived from the dorsal motor nucleus of the vagus. J Neurosci Methods 2006;150(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Broussard DL, Bannerman PG, Tang CM, Hardy M, Pleasure D. Electrophysiologic and molecular properties of cultured enteric glia. J Neurosci Res 1993;34(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  18. Burnashev N, Monyer H, Seeburg PH, Sakmann B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992;8(1):189–198

    Article  PubMed  CAS  Google Scholar 

  19. Kang MG, Chen CC, Wakamori M, Hara Y, Mori Y, Campbell KP. A functional AMPA receptor-calcium channel complex in the postsynaptic membrane. Proc Natl Acad Sci U S A 2006;103(14):5561–5566.

    Article  PubMed  CAS  Google Scholar 

  20. Sergeeva OA, Amberger BT, Vorobjev VS, Eriksson KS, Haas HL. AMPA receptor properties and coexpression with sodium-calcium exchangers in rat hypothalamic neurons. Eur J Neurosci 2004;19(4):957–965.

    Article  PubMed  CAS  Google Scholar 

  21. Smith JP, Cunningham LA, Partridge LD. Coupling of AMPA receptors with the Na(+)/Ca(2+) exchanger in cultured rat astrocytes. Brain Res 2000;887(1):98–109.

    Article  PubMed  CAS  Google Scholar 

  22. Berthoud HR, Earle T, Zheng H, Patterson LM, Phifer C. Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors. Brain Res 2001;915(2):143–154.

    Article  PubMed  CAS  Google Scholar 

  23. Lacassagne O, Kessler JP. Cellular and subcellular distribution of the amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit GluR2 in the rat dorsal vagal complex. Neuroscience 2000;99(3):557–563.

    Article  PubMed  CAS  Google Scholar 

  24. Abrahams TP, Partosoedarso ER, Hornby PJ. Lower oesophageal sphincter relaxation evoked by stimulation of the dorsal motor nucleus of the vagus in ferrets. Neurogastroenterol Motil 2002;14(3):295–304.

    Article  PubMed  CAS  Google Scholar 

  25. Monroe MJ, Hornby PJ, Partosoedarso ER. Central vagal stimulation evokes gastric volume changes in mice: a novel technique using a miniaturized barostat. Neurogastroenterol Motil 2004;16(1):5–11.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang C, Fogel R, Zhang X. Lateral hypothalamus modulates gut-sensitive neurons in the dorsal vagal complex. Brain Res 2003;980(1):31–47.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Fogel R. Glutamate mediates an excitatory influence of the paraventricular hypothalamic nucleus on the dorsal motor nucleus of the vagus. J Neurophysiol 2002;88(1):49–63.

    PubMed  CAS  Google Scholar 

  28. Zheng H, Kelly L, Patterson LM, Berthoud HR. Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals. Am J Physiol 1999;277(4 Pt 2):R1104–R1111.

    PubMed  CAS  Google Scholar 

  29. Fink-Jensen A, Judge ME, Hansen JB, et al. Inhibition of cisplatin-induced emesis in ferrets by the non-NMDA receptor antagonists NBQX and CNQX. Neurosci Lett 1992;137(2):173–177.

    Article  PubMed  CAS  Google Scholar 

  30. Lehmann A, Karrberg L. Effects of N-methyl-d-aspartate receptor antagonists on cisplatin-induced emesis in the ferret. Neuropharmacology 1996;35(4):475–481.

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka H, Grooms SY, Bennett MV, Zukin RS. The AMPAR subunit GluR2: still front and center-stage. Brain Res 2000;886(1–2):190–207.

    Article  PubMed  CAS  Google Scholar 

  32. Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997;42(2):200–207.

    Article  PubMed  CAS  Google Scholar 

  33. Kessler JP, Baude A. Distribution of AMPA receptor subunits GluR1-4 in the dorsal vagal complex of the rat: a light and electron microscope immunocytochemical study. Synapse (NY NY) 1999;34(1):55–67.

    Article  CAS  Google Scholar 

  34. Liu Q, Wong-Riley MT. Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats. J Appl Physiol 2005;98(4):1442–1457.

    Article  PubMed  CAS  Google Scholar 

  35. Sommer B, Kohler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991;67(1):11–19.

    Article  PubMed  CAS  Google Scholar 

  36. Engelman HS, Allen TB, MacDermott AB. The distribution of neurons expressing calcium-permeable AMPA receptors in the superficial laminae of the spinal cord dorsal horn. J Neurosci 1999;19(6):2081–2089.

    PubMed  CAS  Google Scholar 

  37. Geiger JR, Melcher T, Koh DS, et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 1995;15(1):193–204.

    Article  PubMed  CAS  Google Scholar 

  38. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994;12(6):1281–1289.

    Article  PubMed  CAS  Google Scholar 

  39. Koh DS, Geiger JR, Jonas P, Sakmann B. Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J Physiol 1995;485( Pt 2):383–402.

    PubMed  CAS  Google Scholar 

  40. Bar-Peled O, O’Brien RJ, Morrison JH, Rothstein JD. Cultured motor neurons possess calcium-permeable AMPA/kainate receptors. NeuroReport 1999;10(4):855–859.

    Article  PubMed  CAS  Google Scholar 

  41. Brorson JR, Bleakman D, Chard PS, Miller RJ. Calcium directly permeates kainate/alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors in cultured cerebellar Purkinje neurons. Mol Pharmacol 1992;41(4):603–608.

    PubMed  CAS  Google Scholar 

  42. Meucci O, Fatatis A, Holzwarth JA, Miller RJ. Developmental regulation of the toxin sensitivity of Ca(2+)-permeable AMPA receptors in cortical glia. J Neurosci 1996;16(2):519–530.

    PubMed  CAS  Google Scholar 

  43. Mayer ML. Glutamate receptors at atomic resolution. Nature 2006;440(7083):456–462.

    Article  PubMed  CAS  Google Scholar 

  44. Priel A, Kolleker A, Ayalon G, Gillor M, Osten P, Stern-Bach Y. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 2005;25(10):2682–2686.

    Article  PubMed  CAS  Google Scholar 

  45. Thalhammer A, Morth T, Strutz N, Hollmann M. A desensitization-inhibiting mutation in the glutamate binding site of rat alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is dominant in heteromultimeric complexes. Neurosci Lett 1999;277(3):161–164.

    Article  PubMed  CAS  Google Scholar 

  46. Tomita S, Chen L, Kawasaki Y, et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 2003;161(4):805–816.

    Article  PubMed  CAS  Google Scholar 

  47. Vandenberghe W, Robberecht W, Brorson JR. AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J Neurosci 2000;20(1):123–132.

    PubMed  CAS  Google Scholar 

  48. Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996;58:329–348.

    Article  PubMed  CAS  Google Scholar 

  49. Yunker AM, McEnery MW. Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembranes 2003;35(6):533–575.

    Article  CAS  Google Scholar 

  50. Lory P, Bidaud I, Chemin J. T-type calcium channels indifferentiation and proliferation. Cell Calcium 2006;40(2):135–146.

    Article  PubMed  CAS  Google Scholar 

  51. Chemin J, Traboulsie A, Lory P. Molecular pathways underlying the modulation of T-type calcium channels by neurotransmitters and hormones. Cell Calcium 2006;40(2):121–134.

    Article  PubMed  CAS  Google Scholar 

  52. Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol 2006;68:279–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NIH Grants T32CA009672 and ROIDK054032 financially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Mulholland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammori, J.B., Zhang, W., Newman, E.A. et al. Glutamate-induced Calcium Transients in Rat Neurons of the Dorsal Motor Nucleus of the Vagus. J Gastrointest Surg 11, 1016–1024 (2007). https://doi.org/10.1007/s11605-007-0176-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-007-0176-1

Keywords

Navigation