Skip to main content

Advertisement

Log in

Clinical value of [18F]AlF-NOTA-FAPI-04 PET/CT for assessing early-stage liver fibrosis in adult liver transplantation recipients compared with chronic HBV patients

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Aims

To investigate the clinical value and performance of [18F]AlF-NOTA-FAPI-04 PET/CT in assessing early-stage liver fibrosis in liver transplantation (LT) recipients.

Methods

A prospective study including 17 LT recipients and 12 chronic Hepatitis B (CHB) patients was conducted. All patients received liver biopsy, transient elastography (TE), and [18F]AlF-NOTA-FAPI-04 PET/CT. On [18F]AlF-NOTA-FAPI-04 PET/CT scans, the liver parenchyma’s maximum standardized uptake values (SUVmax) were measured. The receiver operating characteristic (ROC) curve analysis was applied to determine the diagnostic efficacy of [18F]AlF-NOTA-FAPI-04 PET/CT in early-stage liver fibrosis (S1–S2) compared with the diagnostic performance of TE.

Results

Among those 29 patients enrolled in this study, 15(51.7%) had fibrosis S0, 10(34.5%) had S1, and 4(13.8%) had S2, respectively. The SUVmax of patients with early-stage liver fibrosis was significantly higher than those without liver fibrosis in LT recipients and CHB patients (P = 0.004, P = 0.02). In LT recipients, a SUVmax cut-off value of 2.0 detected early-stage liver fibrosis with an AUROC of 0.92 (P = 0.006), and a liver stiffness measurements (LSM) score cut-off value of 8.2 kPa diagnosed early-stage liver fibrosis with an AUROC of 0.80 (P = 0.012). In CHB patients, a SUVmax cut-off value of 2.7 detected early-stage liver fibrosis with an AUROC of 0.94 (P < 0.001) and an LSM scores cut-off value of 8.4 kPa diagnosed early-stage liver fibrosis with an AUROC of 0.91 (P < 0.001).

Conclusion

[18F]AlF-NOTA-FAPI-04 PET/CT could be applied to evaluate early-stage liver fibrosis in LT recipients and CHB patients properly, with the potential additional advantages in monitoring and predicting complications after LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Åberg F. Quality of life after liver transplantation. Best Pract Res Clin Gastroenterol. 2020;46–47: 101684. https://doi.org/10.1016/j.bpg.2020.101684.

    Article  PubMed  Google Scholar 

  2. Bhat M, Rollet-Kurhajec KC, Bhat A, et al. Incidence and predictors of advanced liver fibrosis by a validated serum biomarker in liver transplant recipients. Can J Gastroenterol Hepatol. 2017;2017:4381864. https://doi.org/10.1155/2017/4381864.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Galvin Z, Rajakumar R, Chen E, et al. Predictors of De novo nonalcoholic fatty liver disease after liver transplantation and associated fibrosis. Liver Transpl. 2019;25(1):56–67. https://doi.org/10.1002/lt.25338.

    Article  PubMed  Google Scholar 

  4. Bosch W, Heckman MG, Pungpapong S, et al. Association of cytomegalovirus infection and disease with recurrent hepatitis C after liver transplantation. Transplantation. 2012;93(7):723–8. https://doi.org/10.1097/TP.0b013e3182472876.

    Article  PubMed  Google Scholar 

  5. Bhat M, Ghali P, Rollet-Kurhajec KC, et al. Serum fibrosis biomarkers predict death and graft loss in liver transplantation recipients. Liver Transpl. 2015;21(11):1383–94. https://doi.org/10.1002/lt.24217.

    Article  PubMed  Google Scholar 

  6. Lo RC, Kim H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin Mol Hepatol. 2017;23(4):302–7. https://doi.org/10.3350/cmh.2017.0078.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun YM, Chen SY, You H. Regression of liver fibrosis: evidence and challenges. Chin Med J. 2020;133(14):1696–702. https://doi.org/10.1097/cm9.0000000000000835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baran B, Kale S, Patil P, et al. Endoscopic ultrasound-guided parenchymal liver biopsy: a systematic review and meta-analysis. Surg Endosc. 2021;35(10):5546–57. https://doi.org/10.1007/s00464-020-08053-x.

    Article  PubMed  Google Scholar 

  9. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology (Baltimore, Md), 1994;20(1):15–20

  10. Sasaki R, Miyaaki H, Narita S, et al. Serum Mac-2 binding protein glycosylation isomer as a biomarker of fibrosis in living donor liver transplant graft. Clin Transplant. 2021;35(2): e14175. https://doi.org/10.1111/ctr.14175.

    Article  CAS  PubMed  Google Scholar 

  11. Nishikawa H, Enomoto H, Iwata Y, et al. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein for patients with chronic hepatitis B and C: a comparative study. J Viral Hepatitis. 2016;23(12):977–84. https://doi.org/10.1111/jvh.12575.

    Article  CAS  Google Scholar 

  12. Siddiqui MS, Idowu MO, Stromberg K, et al. Diagnostic performance of vibration-controlled transient elastography in liver transplant recipients. Clinical Gastroenterol Hepatol. 2021;19(2):367–74. https://doi.org/10.1016/j.cgh.2020.03.067.

    Article  Google Scholar 

  13. Da BL, Surana P, Takyar V, et al. Vibration-controlled transient elastography for the detection of cirrhosis in chronic hepatitis D infection. J Viral Hepatitis. 2020;27(4):428–36. https://doi.org/10.1111/jvh.13235.

    Article  CAS  Google Scholar 

  14. Imai H, Kamei H, Onishi Y, et al. Diagnostic usefulness of APRI and FIB-4 for the prediction of liver fibrosis after liver transplantation in patients infected with hepatitis C virus. Transpl Proc. 2018;50(5):1431–6. https://doi.org/10.1016/j.transproceed.2018.03.005.

    Article  CAS  Google Scholar 

  15. Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13. https://doi.org/10.1016/j.ultrasmedbio.2003.07.001.

    Article  PubMed  Google Scholar 

  16. Nightingale K, Soo MS, Nightingale R, et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28(2):227–35. https://doi.org/10.1016/s0301-5629(01)00499-9.

    Article  PubMed  Google Scholar 

  17. Bota S, Herkner H, Sporea I, et al. Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int. 2013;33(8):1138–47. https://doi.org/10.1111/liv.12240.

    Article  PubMed  Google Scholar 

  18. Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nuclear Med. 2018;59(9):1415–22. https://doi.org/10.2967/jnumed.118.210443.

    Article  CAS  Google Scholar 

  19. Wang XM, Yu DM, McCaughan GW, et al. Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology (Baltimore, MD). 2005;42(4):935–45. https://doi.org/10.1002/hep.20853.

    Article  CAS  PubMed  Google Scholar 

  20. Loktev A, Lindner T, Burger EM, et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nuclear Med. 2019;60(10):1421–9. https://doi.org/10.2967/jnumed.118.224469.

    Article  CAS  Google Scholar 

  21. Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nuclear Med. 2018;59(9):1423–9. https://doi.org/10.2967/jnumed.118.210435.

    Article  CAS  Google Scholar 

  22. Mannan R, Misra V, Misra SP, et al. A comparative evaluation of scoring systems for assessing necro-inflammatory activity and fibrosis in liver biopsies of patients with chronic viral hepatitis. J Clin Diagn Res JCDR. 2014;8(8):Fc08-12. https://doi.org/10.7860/jcdr/2014/8704.4718.

    Article  PubMed  Google Scholar 

  23. Wei Y, Cheng K, Fu Z, et al. [18F]AlF-NOTA-FAPI-04 PET/CT uptake in metastatic lesions on PET/CT imaging might distinguish different pathological types of lung cancer. Eur J Nucl Med Mol Imaging. 2021;49(5):1671–81. https://doi.org/10.1007/s00259-021-05638-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferraioli G, Filice C, Castera L, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol. 2015;41(5):1161–79. https://doi.org/10.1016/j.ultrasmedbio.2015.03.007.

    Article  PubMed  Google Scholar 

  25. Aydin MM, Akcali KC. Liver fibrosis. Turk J Gastroenterol. 2018;29(1):14–21. https://doi.org/10.5152/tjg.2018.17330.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology (Baltimore, MD). 2003;38(2):518–26. https://doi.org/10.1053/jhep.2003.50346.

    Article  PubMed  Google Scholar 

  27. Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology (Baltimore, Md) 2007;46(1):32–6 https://doi.org/10.1002/hep.21669

  28. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(6):1717–30. https://doi.org/10.1053/j.gastro.2019.01.042.

    Article  PubMed  Google Scholar 

  29. Lefebvre T, Wartelle-Bladou C, Wong P, et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis. Eur Radiol. 2019;29(12):6477–88. https://doi.org/10.1007/s00330-019-06331-4.

    Article  PubMed  Google Scholar 

  30. Verloh N, Einspieler I, Utpatel K, et al. In vivo confirmation of altered hepatic glucose metabolism in patients with liver fibrosis/cirrhosis by (18)F-FDG PET/CT. EJNMMI Res. 2018;8(1):98. https://doi.org/10.1186/s13550-018-0452-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu L, Huang S, Wu H, et al. Superiority of [(68)Ga]Ga-FAPI-04/[(18)F]FAPI-42 PET/CT to [(18)F]FDG PET/CT in delineating the primary tumor and peritoneal metastasis in initial gastric cancer. Eur Radiol. 2022. https://doi.org/10.1007/s00330-022-08743-1.

    Article  PubMed  Google Scholar 

  32. Wang H, Zhu W, Ren S, et al. (68)Ga-FAPI-04 versus (18)F-FDG PET/CT in the detection of hepatocellular carcinoma. Front Oncol. 2021;11: 693640. https://doi.org/10.3389/fonc.2021.693640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou Y, Yang X, Liu H, et al. Value of [(68)Ga]Ga-FAPI-04 imaging in the diagnosis of renal fibrosis. Eur J Nucl Med Mol Imaging. 2021;48(11):3493–501. https://doi.org/10.1007/s00259-021-05343-x.

    Article  CAS  PubMed  Google Scholar 

  34. Röhrich M, Leitz D, Glatting FM, et al. Fibroblast activation protein-specific PET/CT imaging in fibrotic interstitial lung diseases and lung cancer: a translational exploratory study. J Nuclear Med. 2022;63(1):127–33. https://doi.org/10.2967/jnumed.121.261925.

    Article  CAS  Google Scholar 

  35. Pirasteh A, Periyasamy S, Meudt JJ, et al. Staging liver fibrosis by fibroblast activation protein inhibitor positron emission tomography in a human-sized swine model. J Nuclear Med. 2022. https://doi.org/10.2967/jnumed.121.263736.

    Article  Google Scholar 

  36. Yoshino K, Taura K, Okuda Y, et al. Efficiency of acoustic radiation force impulse imaging for the staging of graft fibrosis after liver transplantation. Hepatol Res. 2019;49(4):394–403. https://doi.org/10.1111/hepr.13289.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the staff working in the Liver Disease Center, Department of Organ Transplantation, Department of Pathology, Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University.

Funding

This study is supported by Shandong Province Social Science Popularization and Application Research Project (2021-SKZC-18).

Author information

Authors and Affiliations

Authors

Contributions

RW: formal analysis, writing—original draft. FX-h: methodology, writing—editing. ZY: data curation, investigation. WY: data collection, methodology. ZB: methodology, writing—editing. WZ: data collection, methodology. KX-j: methodology, supervision. YG: data curation, methodology, study guiding. CJ-z: project administration. XM: funding acquisition, conceptualization, writing—review and editing.

Corresponding authors

Correspondence to Guangjie Yang or Man Xie.

Ethics declarations

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Ethical approval

This study was approved by the Ethics Committee of the Affiliated Hospital of Qingdao University (QYFY WZLL 27886).

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, W., Fang, Xh., Zhao, Y. et al. Clinical value of [18F]AlF-NOTA-FAPI-04 PET/CT for assessing early-stage liver fibrosis in adult liver transplantation recipients compared with chronic HBV patients. Jpn J Radiol 42, 536–545 (2024). https://doi.org/10.1007/s11604-024-01528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-024-01528-0

Keywords

Navigation