Skip to main content

Advertisement

Log in

Glymphatic system impairment in corticobasal syndrome: diffusion tensor image analysis along the perivascular space (DTI-ALPS)

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the along the perivascular space (ALPS) index based on the diffusion tensor image ALPS (DTI-ALPS) in corticobasal degeneration with corticobasal syndrome (CBD-CBS) and investigate its correlation with motor and cognitive functions.

Materials and methods

The data of 21 patients with CBD-CBS and 17 healthy controls (HCs) were obtained from the 4-Repeat Tauopathy Neuroimaging Initiative and the Frontotemporal Lobar Degeneration Neuroimaging Initiative databases. Diffusion magnetic resonance imaging was performed using a 3-Tesla MRI scanner. The ALPS index based on DTI-ALPS was automatically calculated after preprocessing. The ALPS index was compared between the CBD-CBS and HC groups via a general linear model analysis, with covariates such as age, sex, years of education, and intracranial volume (ICV). Furthermore, to confirm the relation between the ALPS index and the motor and cognitive score in CBD-CBS, the partial Spearman’s rank correlation coefficient was calculated with covariates such as age, sex, years of education, and ICV. A p value of < 0.05 was considered as statistically significant in all statistical analyses.

Results

The ALPS index of CBD-CBS was significantly lower than that of HC (Cohen’s d =  − 1.53, p < 0.005). Moreover, the ALPS index had a significant positive correlation with the mini mental state evaluation score (rs = 0.65, p < 0.005) and a significant negative correlation with the unified Parkinson’s Disease Rating Scale III score (rs =  − 0.75, p < 0.001).

Conclusion

The ALPS index of patients with CBD-CBS, which is significantly lower than that of HCs, is significantly associated with motor and cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boeve BF. Parkinson-related dementias. Neurol Clin. 2007;25(761–81):vii.

    PubMed  Google Scholar 

  2. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I, et al. Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord. 2003;18:467–86.

    Article  PubMed  Google Scholar 

  3. Litvan I, Hauw JJ, Bartko JJ, Lantos PL, Daniel SE, Horoupian DS, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol. 1996;55:97–105.

    Article  CAS  PubMed  Google Scholar 

  4. Williams DR, Lees AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 2009;8:270–9.

    Article  PubMed  Google Scholar 

  5. Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61:935–46.

    Article  CAS  PubMed  Google Scholar 

  6. Kouri N, Murray ME, Hassan A, Rademakers R, Uitti RJ, Boeve BF, et al. Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain. 2011;134:3264–75.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ling H, Kovacs GG, Vonsattel JPG, Davey K, Mok KY, Hardy J, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain. 2016;139:3237–52.

    Article  PubMed  Google Scholar 

  9. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:147ra111.

  10. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz J-L, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014;45:3092–6.

  12. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siebner HR, von Einsiedel HG, Conrad B. Magnetic resonance ventriculography with gadolinium DTPA: report of two cases [Internet]. Neuroradiology. 1997. 418–22. https://doi.org/10.1007/s002340050436

  14. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35:172–8.

    Article  PubMed  Google Scholar 

  15. Taoka T, Fukusumi A, Miyasaka T, Kawai H, Nakane T, Kichikawa K, et al. Structure of the medullary veins of the cerebral hemisphere and related disorders. Radiographics. 2017;37:281–97.

    Article  PubMed  Google Scholar 

  16. Bae YJ, Choi BS, Kim J-M, Choi J-H, Cho SJ, Kim JH. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat Disord. 2021;82:56–60.

    Article  CAS  PubMed  Google Scholar 

  17. Chen H-L, Chen P-C, Lu C-H, Tsai N-W, Yu C-C, Chou K-H, et al. Associations among cognitive functions, plasma DNA, and diffusion tensor image along the perivascular space (DTI-ALPS) in patients with Parkinson’s disease. Oxid Med Cell Longev. 2021;2021:4034509.

    PubMed  PubMed Central  Google Scholar 

  18. Steward CE, Venkatraman VK, Lui E, Malpas CB, Ellis KA, Cyarto EV, et al. Assessment of the DTI-ALPS parameter along the perivascular space in older adults at risk of dementia. J Neuroimaging. 2021;31:569–78.

    Article  PubMed  Google Scholar 

  19. Toh CH, Castillo M. Peritumoral brain edema volume in meningioma correlates with tumor fractional anisotropy but not apparent diffusion coefficient or cerebral blood volume. Neuroradiology. 2021;63:1263–70.

    Article  PubMed  Google Scholar 

  20. Yang G, Deng N, Liu Y, Gu Y, Yao X. Evaluation of glymphatic system using diffusion MR technique in T2DM cases. Front Hum Neurosci. 2020;14:300.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yokota H, Vijayasarathi A, Cekic M, Hirata Y, Linetsky M, Ho M, et al. Diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers. Curr Gerontol Geriatr Res. 2019;2019:5675014.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang W, Zhou Y, Wang J, Gong X, Chen Z, Zhang X, et al. Glymphatic clearance function in patients with cerebral small vessel disease. Neuroimage. 2021;238: 118257.

    Article  PubMed  Google Scholar 

  23. Zhou W, Shen B, Shen W-Q, Chen H, Zheng Y-F, Fei J-J. Dysfunction of the glymphatic system might be related to iron deposition in the normal aging brain. Front Aging Neurosci. 2020;12: 559603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Liu J, Calhoun VD, Arias-Vasquez A, Zwiers MP, Gupta CN, et al. Exploration of scanning effects in multi-site structural MRI studies. J Neurosci Methods. 2014;230:37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

    Article  PubMed  Google Scholar 

  26. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

  27. Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Young Child. 1991;41:1588–92.

    Google Scholar 

  28. Rs S. Projection technique for evaluating surgery in Parkinson’s disease. Third symposium on Parkinson’s disease. E&S Livingstone; 1969;152–7.

  29. Pfeffer RI, Kurosaki TT, Harrah CH Jr, Chance JM, Filos S. Measurement of functional activities in older adults in the community. J Gerontol. 1982;37:323–9.

    Article  CAS  PubMed  Google Scholar 

  30. Boxer AL, Geschwind MD, Belfor N, Gorno-Tempini ML, Schauer GF, Miller BL, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63:81–6.

    Article  PubMed  Google Scholar 

  31. Gröschel K, Hauser T-K, Luft A, Patronas N, Dichgans J, Litvan I, et al. Magnetic resonance imaging-based volumetry differentiates progressive supranuclear palsy from corticobasal degeneration. Neuroimage. 2004;21:714–24.

    Article  PubMed  Google Scholar 

  32. Josephs KA, Whitwell JL, Boeve BF, Knopman DS, Petersen RC, Hu WT, et al. Anatomical differences between CBS-corticobasal degeneration and CBS-Alzheimer’s disease. Mov Disord Wiley. 2010;25:1246–52.

    Article  Google Scholar 

  33. Josephs KA, Whitwell JL, Dickson DW, Boeve BF, Knopman DS, Petersen RC, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging. 2008;29:280–9.

    Article  PubMed  Google Scholar 

  34. Soliveri P, Monza D, Paridi D, Radice D, Grisoli M, Testa D, et al. Cognitive and magnetic resonance imaging aspects of corticobasal degeneration and progressive supranuclear palsy. Neurology. 1999;53:502–7.

    Article  CAS  PubMed  Google Scholar 

  35. Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70:327–40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Whitwell JL, Jack CR Jr, Boeve BF, Parisi JE, Ahlskog JE, Drubach DA, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010;75:1879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202: 116137.

    Article  PubMed  Google Scholar 

  38. Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage. 2019;200:391–404.

    Article  PubMed  Google Scholar 

  39. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016;76:1574–81.

    Article  PubMed  Google Scholar 

  40. Graham MS, Drobnjak I, Jenkinson M, Zhang H. Quantitative assessment of the susceptibility artefact and its interaction with motion in diffusion MRI. PLoS ONE. 2017;12: e0185647.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL Neuroimage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  42. Kamagata K, Andica C, Takabayashi K, Saito Y, Taoka T, Nozaki H, et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 2022;99:e2648–60.

  43. Cohen J. A power primer. Psychol Bull. 1992;112:155–9.

    Article  CAS  PubMed  Google Scholar 

  44. Urakami K, Mori M, Wada K, Kowa H, Takeshima T, Arai H, et al. A comparison of tau protein in cerebrospinal fluid between corticobasal degeneration and progressive supranuclear palsy. Neurosci Lett. 1999;259:127–9.

    Article  CAS  PubMed  Google Scholar 

  45. Urakami K, Wada K, Arai H, Sasaki H, Kanai M, Shoji M, et al. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J Neurol Sci. 2001;183:95–8.

    Article  CAS  PubMed  Google Scholar 

  46. Borroni B, Gardoni F, Parnetti L, Magno L, Malinverno M, Saggese E, et al. Pattern of Tau forms in CSF is altered in progressive supranuclear palsy. Neurobiol Aging. 2009;30:34–40.

    Article  CAS  PubMed  Google Scholar 

  47. Noguchi M, Yoshita M, Matsumoto Y, Ono K, Iwasa K, Yamada M. Decreased β-amyloid peptide42 in cerebrospinal fluid of patients with progressive supranuclear palsy and corticobasal degeneration [Internet]. J Neurol Sci. 2005. 61–5. https://doi.org/10.1016/j.jns.2005.05.015

  48. Mitani K, Furiya Y, Uchihara T, Ishii K, Yamanouchi H, Mizusawa H, et al. Increased CSF tau protein in corticobasal degeneration. J Neurol. 1998;245:44–6.

    Article  CAS  PubMed  Google Scholar 

  49. Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M, et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun. 1997;236:262–4.

    Article  CAS  PubMed  Google Scholar 

  50. Cho H, Baek MS, Choi JY, Lee SH, Kim JS, Ryu YH, et al. 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology. 2017;89:1170–8.

    Article  CAS  PubMed  Google Scholar 

  51. Smith R, Schöll M, Widner H, van Westen D, Svenningsson P, Hägerström D, et al. In vivo retention of 18F-AV-1451 in corticobasal syndrome. Neurology. 2017;89:845–53.

    Article  PubMed  PubMed Central  Google Scholar 

  52. McMillan CT, Irwin DJ, Nasrallah I, Phillips JS, Spindler M, Rascovsky K, et al. Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 2016;132:935–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Perez-Soriano A, Matarazzo M, Vafai N, Shahinfard E, Miao Q, Higuchi M, et al. PBB3 binding in a patient with corticobasal syndrome. Mov Disord. 2018;33:1359–60.

    Article  PubMed  Google Scholar 

  54. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143:2576–93.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–93.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.

    Article  CAS  PubMed  Google Scholar 

  57. Holmes BB, Diamond MI. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem. 2014;289:19855–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chesser AS, Pritchard SM, Johnson GVW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol. 2013;4:122.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 2014;127:667–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishida K, Yamada K, Nishiyama R, Hashimoto T, Nishida I, Abe Y, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med [Internet]. 2022;219. https://doi.org/10.1084/jem.20211275

  62. Lewis J, Dickson DW. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. 2016;131:27–48.

    Article  CAS  PubMed  Google Scholar 

  63. Verkhratsky A, Nedergaard M, Hertz L. Why are astrocytes important? Neurochem Res. 2015;40:389–401.

    Article  CAS  PubMed  Google Scholar 

  64. Milenkovic I, Kovacs GG. Incidental corticobasal degeneration in a 76-year-old woman. Clin Neuropathol. 2013;32:69–72.

    Article  PubMed  Google Scholar 

  65. Martínez-Maldonado A, Luna-Muñoz J, Ferrer I. Incidental corticobasal degeneration. Neuropathol Appl Neurobiol. 2016;42:659–63.

    Article  PubMed  Google Scholar 

  66. Ling H, Gelpi E, Davey K, Jaunmuktane Z, Mok KY, Jabbari E, et al. Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathol. 2020;139:717–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, et al. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neurosci Biobehav Rev. 2019;103:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7.

    Article  CAS  PubMed  Google Scholar 

  69. Zahed H, Zuzuarregui JRP, Gilron R, Denison T, Starr PA, Little S. The neurophysiology of sleep in Parkinson’s disease. Mov Disord. 2021;36:1526–42.

    Article  PubMed  Google Scholar 

  70. Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo AO, Veeraraghavan VP, et al. Sleep deprivation and neurological disorders. Biomed Res Int. 2020;2020:5764017.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology. 2020;45:104–20.

    Article  CAS  PubMed  Google Scholar 

  72. Kimura K, Tachibana N, Aso T, Kimura J, Shibasaki H. Subclinical REM sleep behavior disorder in a patient with corticobasal degeneration. Sleep. 1997;20:891–4.

    Article  CAS  PubMed  Google Scholar 

  73. Munhoz RP, Teive HA. REM sleep behaviour disorder: how useful is it for the differential diagnosis of parkinsonism? [Internet]. Clin Neurol Neurosurg. 2014. 71–4. https://doi.org/10.1016/j.clineuro.2014.09.014

  74. Scott-Massey A, Boag MK, Magnier A, Bispo DPC, Khoo TK, Pountney DL. Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease [Internet]. Int J Mol Sci. 2022. 12928. https://doi.org/10.3390/ijms232112928

  75. Taoka T, Ito R, Nakamichi R, Kamagata K, Sakai M, Kawai H, et al. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol. 2022;40:147–58.

    Article  PubMed  Google Scholar 

  76. Maximov II, Alnaes D, Westlye LT. Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: effects of artefact corrections on diffusion metrics and their age associations in UK Biobank. Hum Brain Mapp. 2019;40:4146–62.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kikuta J, Kamagata K, Takabayashi K, Taoka T, Yokota H, Andica C, et al. An investigation of water diffusivity changes along the perivascular space in elderly subjects with hypertension. AJNR Am J Neuroradiol. 2022;43:48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this manuscript were obtained from the 4-Repeat Neuroimaging Initiative (4RTNI) database and the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) (http://4rtni-ftldni.ini.usc.edu/). 4RTNI was launched in early 2011 and is funded through the National Institute of Aging and The Tau Research Consortium. The primary goal of 4RTNI is to identify neuroimaging and biomarker indicators for disease progression in the 4-repeat tauopathy neurodegenerative diseases, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). FTLDNI is also founded through the National Institute of Aging, and started in 2010. The primary goals of FTLDNI are to identify neuroimaging modalities and methods of analysis for tracking frontotemporal lobar degeneration (FTLD) and to assess the value of imaging versus other biomarkers in diagnostic roles. The Principal Investigator of 4RTNI is Dr. Adam Boxer, MD, PhD, at the University of California, San Francisco. The data is the result of collaborative efforts at four sites in North America. For more information on 4RTNI, please visit: http://memory.ucsf.edu/research/studies/4rtni

The Principal Investigator of NIFD is Dr. Howard Rosen, MD at the University of California, San Francisco. The data is the result of collaborative efforts at three sites in North America. For up-to-date information on participation and protocol, please visit: http://memory.ucsf.edu/research/studies/nifd

Funding

Data collection and sharing for this project was funded by the 4-Repeat Tauopathy Neuroimaging Initiative (4RTNI) (National Institutes of Health Grant R01 AG038791) and through generous contributions from the Tau Research Consortium. The study was coordinated through the Memory and Aging Center, University of California, San Francisco. 4RTNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data collection and sharing for this project was funded by the Frontotemporal Lobar Degeneration Neuroimaging Initiative (National Institutes of Health Grant R01 AG032306). The study is coordinated through the University of California, San Francisco, Memory and Aging Center. FTLDNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. This study was partially supported by the Juntendo Research Branding Project, JSPS KAKENHI (grant nos. 16H06280, 18K18164, 18H02772, 19K17244, 21K07690, 21K12153, 22H04926, 23H02865), a Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan, the Brain/MINDS Beyond program (grant no. JP19dm0307101) of the Japan Agency for Medical Research and Development (AMED), and AMED under grant number JP21wm0425006.

Author information

Authors and Affiliations

Authors

Contributions

YS conceived the presented idea. YS developed the theory and investigated the report on this research.

Corresponding author

Correspondence to Koji Kamagata.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article used open-source data from the 4RTNI and FTLDNI projects (is available at http://4rtni-ftldni.ini.usc.edu/) and did not involve studies with human participants or animals performed by the authors at our institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, Y., Kamagata, K., Andica, C. et al. Glymphatic system impairment in corticobasal syndrome: diffusion tensor image analysis along the perivascular space (DTI-ALPS). Jpn J Radiol 41, 1226–1235 (2023). https://doi.org/10.1007/s11604-023-01454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-023-01454-7

Keywords

Navigation