Skip to main content
Log in

Dynamic contrast-enhanced magnetic resonance imaging for evaluating early response to radiosurgery in patients with vestibular schwannoma

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to evaluate early treatment response in vestibular schwannoma (VS) patients after radiosurgery.

Methods

Twenty-four VS patients who underwent gamma knife radiosurgery were prospectively followed up for at least four years. DCE-MRI sequences, in addition to standard MRI protocol, were obtained prior to radiosurgery, at 3 and 6 months. Conventionally, treatment responses based on tumor volume changes were classified as regression or stable (RS), transient tumor enlargement (TTE), and continuous tumor enlargement (CTE). DCE-MRI parameters, such as Ktrans, Kep and Ve, were compared according to follow-up periods and between groups. The diagnostic performance was tested using receiver operating characteristic (ROC) curves.

Results

Changes in tumor volume were as follows at the last 48 months of follow-up: RS in 11 patients (45.8%), TTE in 10 patients (41.7%), and CTE in three patients (12.5%). The median time required to distinguish TTE from CTE using conventional MRI was 12 months (range 9–18). The Ktrans and Ve were significantly decreased in patients with RS and TTE at 3 and 6 months, but did not differ significantly in patients with CTE. There were no significant differences in Ktrans and Ve between patients with RS and TTE at 3 and 6 months. Both Ktrans and Ve demonstrated high diagnostic performance in evaluating early treatment response to radiosurgery in patients with VS.

Conclusion

DCE-MRI may aid in the monitoring and early prediction of treatment response in patients with VS following radiosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VS:

Vestibular schwannoma

MRI:

Magnetic resonance imaging

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

K trans :

Volumetric transfer constant

V e :

Fractional volume of extracellular extravascular space

K ep :

Rate constant

RS:

Regression or stable

TTE:

Transient tumor enlargement

CTE:

Continuous tumor enlargement

References

  1. Mohan S, Hoeffner E, Bigelow DC, Loevner LA. Applications of magnetic resonance imaging in adult temporal bone disorders. Magn Reson Imaging Clin N Am. 2012;20(3):545–72. https://doi.org/10.1016/j.mric.2012.06.001.

    Article  PubMed  Google Scholar 

  2. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin N Am. 2009;42(4):635–54. https://doi.org/10.1016/j.otc.2009.04.009.

    Article  Google Scholar 

  3. Meijer OW, Weijmans EJ, Knol DL, Slotman BJ, Barkhof F, Vandertop WP, Castelijns JA. Tumor-volume changes after radiosurgery for vestibular schwannoma: implications for follow-up MR imaging protocol. AJNR Am J Neuroradiol. 2008;29(5):906–10. https://doi.org/10.3174/ajnr.A0969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakamura H, Jokura H, Takahashi K, Boku N, Akabane A, Yoshimoto T. Serial follow-up MR imaging after gamma knife radiosurgery for vestibular schwannoma. AJNR Am J Neuroradiol. 2000;21(8):1540–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasegawa T, Kida Y, Kobayashi T, Yoshimoto M, Mori Y, Yoshida J. Long-term outcomes in patients with vestibular schwannomas treated using gamma knife surgery: 10-year follow up. J Neurosurg. 2005;102(1):10–6. https://doi.org/10.3171/jns.2005.102.1.0010.

    Article  PubMed  Google Scholar 

  6. Hasegawa T, Kida Y, Yoshimoto M, Koike J, Goto K. Evaluation of tumor expansion after stereotactic radiosurgery in patients harboring vestibular schwannomas. Neurosurgery. 2006;58(6):1119–28. https://doi.org/10.1227/01.Neu.0000215947.35646.Dd (discussion 1119–1128).

    Article  PubMed  Google Scholar 

  7. Okunaga T, Matsuo T, Hayashi N, Hayashi Y, Shabani HK, Kaminogo M, Ochi M, Nagata I. Linear accelerator radiosurgery for vestibular schwannoma: measuring tumor volume changes on serial three-dimensional spoiled gradient-echo magnetic resonance images. J Neurosurg. 2005;103(1):53–8. https://doi.org/10.3171/jns.2005.103.1.0053.

    Article  PubMed  Google Scholar 

  8. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro Oncol. 2012;14(1):87–92. https://doi.org/10.1093/neuonc/nor171.

    Article  PubMed  Google Scholar 

  9. Nagano O, Higuchi Y, Serizawa T, Ono J, Matsuda S, Yamakami I, Saeki N. Transient expansion of vestibular schwannoma following stereotactic radiosurgery. J Neurosurg. 2008;109(5):811–6. https://doi.org/10.3171/jns/2008/109/11/0811.

    Article  PubMed  Google Scholar 

  10. Abramson RG, Arlinghaus LR, Dula AN, Quarles CC, Stokes AM, Weis JA, Whisenant JG, Chekmenev EY, Zhukov I, Williams JM, Yankeelov TE. MR imaging biomarkers in oncology clinical trials. Magn Reson Imaging Clin N Am. 2016;24(1):11–29. https://doi.org/10.1016/j.mric.2015.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. García-Figueiras R, Padhani AR, Baleato-González S. Therapy monitoring with functional and molecular MR imaging. Magn Reson Imaging Clin N Am. 2016;24(1):261–88. https://doi.org/10.1016/j.mric.2015.08.003.

    Article  PubMed  Google Scholar 

  12. Lin YC, Wang CC, Wai YY, Wan YL, Ng SH, Chen YL, Liu HL, Wang JJ. Significant temporal evolution of diffusion anisotropy for evaluating early response to radiosurgery in patients with vestibular schwannoma: findings from functional diffusion maps. AJNR Am J Neuroradiol. 2010;31(2):269–74. https://doi.org/10.3174/ajnr.A1799.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chawla S, Kim S, Loevner LA, Hwang WT, Weinstein G, Chalian A, Quon H, Poptani H. Prediction of disease-free survival in patients with squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2011;32(4):778–84. https://doi.org/10.3174/ajnr.A2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim S, Loevner LA, Quon H, Kilger A, Sherman E, Weinstein G, Chalian A, Poptani H. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2010;31(2):262–8. https://doi.org/10.3174/ajnr.A1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Padhani AR, Hayes C, Assersohn L, Powles T, Makris A, Suckling J, Leach MO, Husband JE. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology. 2006;239(2):361–74. https://doi.org/10.1148/radiol.2392021099.

    Article  PubMed  Google Scholar 

  16. Johansen R, Jensen LR, Rydland J, Goa PE, Kvistad KA, Bathen TF, Axelson DE, Lundgren S, Gribbestad IS. Predicting survival and early clinical response to primary chemotherapy for patients with locally advanced breast cancer using DCE-MRI. J Magn Reson Imaging. 2009;29(6):1300–7. https://doi.org/10.1002/jmri.21778.

    Article  PubMed  Google Scholar 

  17. Petrillo A, Fusco R, Petrillo M, Granata V, Bianco F, Di Marzo M, Delrio P, Tatangelo F, Botti G, Pecori B, Avallone A. DCE-MRI time–intensity curve visual inspection to assess pathological response after neoadjuvant therapy in locally advanced rectal cancer. Jpn J Radiol. 2018;36(10):611–21. https://doi.org/10.1007/s11604-018-0760-1.

    Article  CAS  PubMed  Google Scholar 

  18. Kato E, Mori N, Mugikura S, Sato S, Ishida T, Takase K. Value of ultrafast and standard dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the presence and extension of residual disease after neoadjuvant chemotherapy in breast cancer. Jpn J Radiol. 2021;39(8):791–801. https://doi.org/10.1007/s11604-021-01110-y.

    Article  CAS  PubMed  Google Scholar 

  19. Griffith B, Jain R. Perfusion imaging in neuro-oncology: basic techniques and clinical applications. Radiol Clin N Am. 2015;53(3):497–511. https://doi.org/10.1016/j.rcl.2015.01.004.

    Article  PubMed  Google Scholar 

  20. Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19(4):527–57. https://doi.org/10.1016/j.nic.2009.08.007.

    Article  PubMed  Google Scholar 

  21. Paldino MJ, Barboriak DP. Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2009;17(2):277–89. https://doi.org/10.1016/j.mric.2009.01.007.

    Article  PubMed  Google Scholar 

  22. Salem A, O’Connor JPB. Assessment of tumor angiogenesis: dynamic contrast-enhanced MR imaging and beyond. Magn Reson Imaging Clin N Am. 2016;24(1):45–56. https://doi.org/10.1016/j.mric.2015.08.010.

    Article  PubMed  Google Scholar 

  23. Türkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010;16(3):186–92. https://doi.org/10.4261/1305-3825.Dir.2537-08.1.

    Article  PubMed  Google Scholar 

  24. Gardner G, Robertson JH. Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol Rhinol Laryngol. 1988;97(1):55–66. https://doi.org/10.1177/000348948809700110.

    Article  CAS  PubMed  Google Scholar 

  25. Almeida-Freitas DB, Pinho MC, Otaduy MC, Braga HF, Meira-Freitas D, da Costa LC. Assessment of irradiated brain metastases using dynamic contrast-enhanced magnetic resonance imaging. Neuroradiology. 2014;56(6):437–43. https://doi.org/10.1007/s00234-014-1344-0.

    Article  PubMed  Google Scholar 

  26. Li KL, Djoukhadar I, Zhu X, Zhao S, Lloyd S, McCabe M, McBain C, Evans DG, Jackson A. Vascular biomarkers derived from dynamic contrast-enhanced MRI predict response of vestibular schwannoma to antiangiogenic therapy in type 2 neurofibromatosis. Neuro Oncol. 2016;18(2):275–82. https://doi.org/10.1093/neuonc/nov168.

    Article  CAS  PubMed  Google Scholar 

  27. Li SP, Makris A, Beresford MJ, Taylor NJ, Ah-See ML, Stirling JJ, d’Arcy JA, Collins DJ, Kozarski R, Padhani AR. Use of dynamic contrast-enhanced MR imaging to predict survival in patients with primary breast cancer undergoing neoadjuvant chemotherapy. Radiology. 2011;260(1):68–78. https://doi.org/10.1148/radiol.11102493.

    Article  PubMed  Google Scholar 

  28. Hötker AM, Tarlinton L, Mazaheri Y, Woo KM, Gönen M, Saltz LB, Goodman KA, Garcia-Aguilar J, Gollub MJ. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: a comparison of morphological, volumetric and functional MRI parameters. Eur Radiol. 2016;26(12):4303–12. https://doi.org/10.1007/s00330-016-4283-9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Martens MH, Subhani S, Heijnen LA, Lambregts DM, Buijsen J, Maas M, Riedl RG, Jeukens CR, Beets GL, Kluza E, Beets-Tan RG. Can perfusion MRI predict response to preoperative treatment in rectal cancer? Radiother Oncol. 2015;114(2):218–23. https://doi.org/10.1016/j.radonc.2014.11.044.

    Article  PubMed  Google Scholar 

  30. Sahani DV, Jiang T, Hayano K, Duda DG, Catalano OA, Ancukiewicz M, Jain RK, Zhu AX. Magnetic resonance imaging biomarkers in hepatocellular carcinoma: association with response and circulating biomarkers after sunitinib therapy. J Hematol Oncol. 2013;6:51. https://doi.org/10.1186/1756-8722-6-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun NN, Liu C, Ge XL, Wang J. Dynamic contrast-enhanced MRI for advanced esophageal cancer response assessment after concurrent chemoradiotherapy. Diagn Interv Radiol. 2018;24(4):195–202. https://doi.org/10.5152/dir.2018.17369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng SL, Chen CF, Liu HL, Lui CC, Huang YJ, Lee TH, Chang CC, Wang FN. Analysis of parametric histogram from dynamic contrast-enhanced MRI: application in evaluating brain tumor response to radiotherapy. NMR Biomed. 2013;26(4):443–50. https://doi.org/10.1002/nbm.2882.

    Article  PubMed  Google Scholar 

  33. Jakubovic R, Sahgal A, Soliman H, Milwid R, Zhang L, Eilaghi A, Aviv RI. Magnetic resonance imaging-based tumour perfusion parameters are biomarkers predicting response after radiation to brain metastases. Clin Oncol (R Coll Radiol). 2014;26(11):704–12. https://doi.org/10.1016/j.clon.2014.06.010.

    Article  CAS  Google Scholar 

  34. Lu F, Li YQ, Aubert I, Wong CS. Endothelial cells regulate p53-dependent apoptosis of neural progenitors after irradiation. Cell Death Dis. 2012;3(6): e324. https://doi.org/10.1038/cddis.2012.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Folkman J, Camphausen K. Cancer. What does radiotherapy do to endothelial cells? Science. 2001;293(5528):227–8. https://doi.org/10.1126/science.1062892.

    Article  CAS  PubMed  Google Scholar 

  36. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380(6569):75–9. https://doi.org/10.1038/380075a0.

    Article  CAS  PubMed  Google Scholar 

  37. Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys. 2005;62(1):279–87. https://doi.org/10.1016/j.ijrobp.2005.01.039.

    Article  CAS  PubMed  Google Scholar 

  38. Hirato M, Inoue H, Nakamura M, Ohye C, Hirato J, Shibazaki T, Andou Y. Gamma knife radiosurgery for acoustic schwannoma: early effects and preservation of hearing. Neurol Med Chir (Tokyo). 1995;35(10):737–41. https://doi.org/10.2176/nmc.35.737.

    Article  CAS  Google Scholar 

  39. Kobayashi T, Tanaka T, Kida Y. The early effects of gamma knife on 40 cases of acoustic neurinoma. Acta Neurochir Suppl. 1994;62:93–7. https://doi.org/10.1007/978-3-7091-9371-6_19.

    Article  CAS  PubMed  Google Scholar 

  40. Xu QG, Xian JF. Role of quantitative magnetic resonance imaging parameters in the evaluation of treatment response in malignant tumors. Chin Med J (Engl). 2015;128(8):1128–33. https://doi.org/10.4103/0366-6999.155127.

    Article  Google Scholar 

  41. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    CAS  PubMed  Google Scholar 

  42. Tong T, Sun Y, Gollub MJ, Peng W, Cai S, Zhang Z, Gu Y. Dynamic contrast-enhanced MRI: use in predicting pathological complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. J Magn Reson Imaging. 2015;42(3):673–80. https://doi.org/10.1002/jmri.24835.

    Article  PubMed  Google Scholar 

  43. Guo J, Reddick WE, Glass JO, Ji Q, Billups CA, Wu J, Hoffer FA, Kaste SC, Jenkins JJ, Ortega Flores XC, Quintana J, Villarroel M, Daw NC. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer. 2012;118(15):3776–85. https://doi.org/10.1002/cncr.26701.

    Article  PubMed  Google Scholar 

  44. Lim JS, Kim D, Baek SE, Myoung S, Choi J, Shin SJ, Kim MJ, Kim NK, Suh J, Kim KW, Keum KC. Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2012;22(8):1693–700. https://doi.org/10.1007/s00330-012-2416-3.

    Article  PubMed  Google Scholar 

  45. Chikui T, Kawano S, Kawazu T, Hatakenaka M, Koga S, Ohga M, Matsuo Y, Sunami S, Sugiura T, Shioyama Y, Obara M, Yoshiura K. Prediction and monitoring of the response to chemoradiotherapy in oral squamous cell carcinomas using a pharmacokinetic analysis based on the dynamic contrast-enhanced MR imaging findings. Eur Radiol. 2011;21(8):1699–708. https://doi.org/10.1007/s00330-011-2102-x.

    Article  PubMed  Google Scholar 

  46. Wheeler JM, Warren BF, Jones AC, Mortensen NJ. Preoperative radiotherapy for rectal cancer: implications for surgeons, pathologists and radiologists. Br J Surg. 1999;86(9):1108–20. https://doi.org/10.1046/j.1365-2168.1999.01209.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HÖ, MY, NE, AYÖ; methodology: HÖ, MY, NE, GK, ÖHE, AYÖ; formal analysis and investigation: HÖ, MY, NE; writer: HÖ; writing—review and editing: MY, ÖHE, GK, AYÖ. Supervision: ÖHE, GK, AYÖ.

Corresponding author

Correspondence to Halil Özer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study approved by the institutional ethics committee (336/2016).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, H., Yazol, M., Erdoğan, N. et al. Dynamic contrast-enhanced magnetic resonance imaging for evaluating early response to radiosurgery in patients with vestibular schwannoma. Jpn J Radiol 40, 678–688 (2022). https://doi.org/10.1007/s11604-021-01245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-021-01245-y

Keywords

Navigation