Skip to main content

Advertisement

Log in

Noncontrast MRI of acute abdominal pain caused by gastrointestinal lesions: indications, protocol, and image interpretation

  • Invited Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Gastrointestinal tract lesions are major causes of acute abdominal pain. A rapid, accurate, and reliable diagnosis is required to manage patients. Magnetic resonance imaging (MRI) is a nonionizing modality that is beneficial for pregnant women, children, and young adults who are sensitive to ionizing radiation. For patients with renal impairment who are not accurately diagnosed with noncontrast computed tomography, noncontrast MRI can serve as an alternative diagnostic modality. MRI protocols used for acute abdominal pain are supposed to be optimized and prioritized to shorten scanning times. Single-shot T2-weighted and fat-suppressed T2-weighted imaging are important pulse sequences that are used to reveal pathology and inflammation in the gastrointestinal tract. Diffusion-weighted imaging clearly depicts inflammation and abscesses as hyperintense lesions. Most acute gastrointestinal tract lesions, including inflammation, ischemia, obstruction, and perforation, demonstrate bowel wall thickening. Bowel obstruction and adynamic ileus present bowel dilatation, and perforation and penetration show bowel wall defects. MRI can be used to reveal these pathological findings with some characteristics depending on their underlying pathophysiology. This review article discusses imaging modalities for acute abdominal pain, describes a noncontrast MRI protocol for acute abdominal pain caused by gastrointestinal tract lesions, and reviews MRI findings of acute gastrointestinal tract lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lameris W, van Randen A, van Es HW, van Heesewijk JP, van Ramshorst B, Bouma WH, et al. Imaging strategies for detection of urgent conditions in patients with acute abdominal pain: diagnostic accuracy study. BMJ. 2009;338:b2431.

    PubMed  PubMed Central  Google Scholar 

  2. Stoker J, Randen A, Laméris W, Boermeester MA. Imaging patients with acute. Abdom Pain Radiol. 2009;253(1):31–46.

    Google Scholar 

  3. Garcia EM, Camacho MA, Karolyi DR, Kim DH, Cash BD, Chang KJ, et al. ACR appropriateness criteria((R)) right lower quadrant pain-suspected appendicitis. J Am Coll Radiol. 2018;15(11S):S373–S87.

    PubMed  Google Scholar 

  4. Mayumi T, Yoshida M, Tazuma S, Furukawa A, Nishii O, Shigematsu K, et al. The practice guidelines for primary care of acute abdomen 2015. Jpn J Radiol. 2016;34(1):80–115.

    PubMed  Google Scholar 

  5. Kellow ZS, Maclnnes M, Kurzencwyg D, Rewal S, Jaffer R, Kivacina B, et al. The role of abdominal radiography in the evaluation of the nontrauma emergency patient. Radiology. 2008;248(3):887–93.

    PubMed  Google Scholar 

  6. Alshamari M, Norrman E, Geijer M, Jansson K, Geijer H. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review. Eur Radiol. 2016;26(6):1766–74.

    PubMed  Google Scholar 

  7. Gans SL, Pols MA, Stoker J, Boermeester MA, Expert Steering Group. Guideline for the diagnostic pathway in patients with acute abdominal pain. Dig Surg. 2015;32(1):23–31.

    PubMed  Google Scholar 

  8. Lindelius A, Torngren S, Sonden A, Pettersson H, Adami J. Impact of surgeon-performed ultrasound on diagnosis of abdominal pain. Emerg Med J. 2008;25(8):486–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hijaz NM, Friesen CA. Managing acute abdominal pain in pediatric patients: current perspectives. Pediatr Health Med Ther. 2017;8:83–91.

    Google Scholar 

  10. Masselli G, Derchi L, McHugo J, Rockall A, Vock P, Weston M, et al. Acute abdominal and pelvic pain in pregnancy: ESUR recommendations. Eur Radiol. 2013;23(12):3485–500.

    PubMed  Google Scholar 

  11. Othman AE, Bongers MN, Zinsser D, Schabel C, Wichmann JL, Arshid R, et al. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT. Acta Radiol. 2018;59(1):4–12.

    PubMed  Google Scholar 

  12. Poletti PA, Becker M, Becker CD, Halfon Poletti A, Rutschmann OT, Zaidi H, et al. Emergency assessment of patients with acute abdominal pain using low-dose CT with iterative reconstruction: a comparative study. Eur Radiol. 2017;27(8):3300–9.

    PubMed  Google Scholar 

  13. Rosado Ingelmo A, Dona Diaz I, Cabanas Moreno R, Moya Quesada MC, Garcia-Aviles C, Garcia Nunez I, et al. Clinical practice guidelines for diagnosis and management of hypersensitivity reactions to contrast media. J Investig Allergol Clin Immunol. 2016;26(3):144–55.

    CAS  PubMed  Google Scholar 

  14. Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, et al. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Jpn J Radiol. 2020;38(1):3–46.

    PubMed  Google Scholar 

  15. Bax T, Macha M, Mayberry J. The utility of CT scan for the diagnostic evaluation of acute abdominal pain. Am J Surg. 2019;217(5):959–66.

    PubMed  Google Scholar 

  16. Tonolini M, Valconi E, Vanzulli A, Bianco R. Radiation overexposure from repeated CT scans in young adults with acute abdominal pain. Emerg Radiol. 2018;25(1):21–7.

    PubMed  Google Scholar 

  17. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316(9):952–61.

    PubMed  Google Scholar 

  18. van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin MF, Bertolotto M, et al. Post-contrast acute kidney injury—part 1: definition, clinical features, incidence, role of contrast medium and risk factors: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2018;28(7):2845–55.

    PubMed  PubMed Central  Google Scholar 

  19. Tsai LL, Grant AK, Mortele KJ, Kung JW, Smith MP. A practical guide to MR imaging safety: what radiologists need to know. Radiographics. 2015;35(6):1722–37.

    PubMed  Google Scholar 

  20. Lubarsky M, Kalb B, Sharma P, Keim SM, Martin DR. MR imaging for acute nontraumatic abdominopelvic pain: rationale and practical considerations. Radiographics. 2013;33(2):313–37.

    PubMed  Google Scholar 

  21. Petkovska I, Martin MD, Covington MF, Urbina S, Duke E, Daye ZJ, et al. Accuracy of unenhanced MR imaging in the detection of acute appendicitis: single-institution clinical performance review. Radiology. 2016;2(279):451–60.

    Google Scholar 

  22. Repplinger MD, Pickhardt PJ, Robbins JB, Kitchin DR, Ziemlewicz TJ, Hetzel SJ, et al. Prospective comparison of the diagnostic accuracy of MR imaging versus CT for acute appendicitis. Radiology. 2018;288(2):467–75.

    PubMed  PubMed Central  Google Scholar 

  23. Oto A, Srinivasan PN, Ernst RD, Koroglu M, Cesani F, Nishino T, et al. Revisiting MRI for appendix location during pregnancy. Am J Roentgenol. 2006;186(3):883–7.

    Google Scholar 

  24. Nitta N, Takahashi M, Furukawa A, Murata K, Mori M, Fukushima M. MR imaging of the normal appendix and acute appendicitis. J Magn Reson Imaging. 2005;21(2):156–65.

    PubMed  Google Scholar 

  25. Byott S, Harris I. Rapid acquisition axial and coronal T2 HASTE MR in the evaluation of acute abdominal pain. Eur J Radiol. 2016;85(1):286–90.

    PubMed  Google Scholar 

  26. Mian M, Khosa F, Ali IT, McLaughlin P, Klass D, Chang S, et al. Faster magnetic resonance imaging in emergency room patients with right lower quadrant pain and suspected acute appendicitis. Pol J Radiol. 2018;83:e340–e7.

    PubMed  PubMed Central  Google Scholar 

  27. Inoue A, Furukawa A, Nitta N, Takaki K, Ohta S, Murata K. Optimization of pulse sequences in ultrafast MR imaging for the diagnosis of acute abdominal pain caused by gastrointestinal disease. Acta Radiologica Open. 2020;9(8):2058460120949246.

    PubMed  PubMed Central  Google Scholar 

  28. Singh A, Danrad R, Hahn PF, Blake MA, Mueller RP, Novelline RA. MR imaging of the acute abdomen and pelvis: acute appendicitis and beyond. Radiographics. 2007;27(5):1419–31.

    PubMed  Google Scholar 

  29. Pereira JM, Sirlin CB, Pinto PS, Jeffrey RB, Stella DL, Casola G. Disproportionate fat stranding: a helpful CT sign in patients with acute abdominal pain. Radiographics. 2004;24(3):703–15.

    PubMed  Google Scholar 

  30. Lee MH, Eutsler EP, Sheybani EF, Khanna G. Rapid non-contrast magnetic resonance imaging for post appendectomy intra-abdominal abscess in children. Pediatr Radiol. 2017;47(8):935–41.

    PubMed  Google Scholar 

  31. Iraha Y, Okada M, Iraha R, Azama K, Yamashiro T, Tsubakimoto M, et al. CT and MR imaging of gynecologic emergencies. Radiographics. 2017;37(5):1569–86.

    PubMed  Google Scholar 

  32. Inci E, Kilickesmez O, Hocaoglu E, Aydin S, Bayramoglu S, Cimilli T. Utility of diffusion-weighted imaging in the diagnosis of acute appendicitis. Eur Radiol. 2011;21(4):768–75.

    PubMed  Google Scholar 

  33. Inoue A, Furukawa A, Nitta N, Takaki K, Ota S, Zen Y, et al. Accuracy, criteria, and clinical significance of visual assessment on diffusion-weighted imaging and apparent diffusion coefficient quantification for diagnosing acute appendicitis. Abdom Radiol. 2019;44(10):3235–45.

    Google Scholar 

  34. Bayraktutan U, Oral A, Kantarci M, Demir M, Ogul H, Yalcin A, et al. Diagnostic performance of diffusion-weighted MR imaging in detecting acute appendicitis in children: comparison with conventional MRI and surgical findings. J Magn Reson Imaging. 2014;39(6):1518–24.

    PubMed  Google Scholar 

  35. Leeuwenburgh MNN, Wiarda BM, Bipat S, Nio CY, Bollen TL, Kardux JJ, et al. Acute appendicitis on abdominal MR images: training readers to improve diagnostic accuracy. Radiology. 2012;264(2):455–63.

    PubMed  Google Scholar 

  36. Barat M, Hoeffel C, Bouquot M, Jannot AS, Dautry R, Boudiaf M, et al. Preoperative evaluation of small bowel complications in Crohn's disease: comparison of diffusion-weighted and contrast-enhanced MR imaging. Eur Radiol. 2019;29(4):2034–44.

    CAS  PubMed  Google Scholar 

  37. Dohke M, Watanabe Y, Okumura A, Amoh Y, Hayashi T, Yoshizako T, et al. Comprehensive MR imaging of acute gynecologic diseases. Radiographics. 2000;20(6):1551–666.

    CAS  PubMed  Google Scholar 

  38. Shin I, An C, Lim JS, Kim MJ, Chung YE. T1 bright appendix sign to exclude acute appendicitis in pregnant women. Eur Radiol. 2017;27(8):3310–6.

    PubMed  Google Scholar 

  39. Heverhagen JT, Klose KJ. MR imaging for acute lower abdominal and pelvic pain. Radiographics. 2009;29(6):1781–96.

    PubMed  Google Scholar 

  40. Gourtsoyiannis N, Papanikolaou N, Grammatikakis J, Maris T, Prassopoulos P. MR imaging of the small bowel with a true-FISP sequence after enteroclysis with water solution. Investig Radiol. 2000;35(12):707–11.

    CAS  Google Scholar 

  41. Pereles FS, McCarthy RM, Baskaran V, Carr JC, Kapoor V, Krupinski EA, et al. Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology. 2002;223(1):270–4.

    PubMed  Google Scholar 

  42. Inoue A, Furukawa A, Yamamoto H, Ohta S, Linh NDH, Syerikjan T, et al. Acceleration of small bowel motility after oral administration of dai-kenchu-to (TJ-100) assessed by cine magnetic resonance imaging. PLoS ONE. 2018;13(1):e0191044.

    PubMed  PubMed Central  Google Scholar 

  43. Heye T, Stein D, Antolovic D, Dueck M, Kauczor HU, Hosch W. Evaluation of bowel peristalsis by dynamic cine MRI: detection of relevant functional disturbances–initial experience. J Magn Reson Imaging. 2012;35(4):859–67.

    PubMed  Google Scholar 

  44. Takahara T, Kwee TC, Haradome H, Aoki K, Matsuoka H, Nakamura A, et al. Peristalsis gap sign at cine magnetic resonance imaging for diagnosing strangulated small bowel obstruction: feasibility study. Jpn J Radiol. 2011;29(1):11–8.

    PubMed  Google Scholar 

  45. Wnorowski AM, Guglielmo FF, Mitchell DG. How to perform and interpret cine MR enterography. J Magn Reson Imaging. 2015;42(5):1180–9.

    PubMed  Google Scholar 

  46. Inoue A, Ohta S, Nitta N, Yoshimura M, Shimizu T, Tani M, et al. MRI can be used to assess advanced T-stage colon carcinoma as well as rectal carcinoma. Jpn J Radiol. 2016;34(12):809–19.

    CAS  PubMed  Google Scholar 

  47. Amitai MM, Arazi-Kleinman T, Avidan B, Apter S, Konen E, Biegon A, et al. Fat halo sign in the bowel wall of patients with Crohn's disease. Clin Radiol. 2007;62(10):994–7.

    CAS  PubMed  Google Scholar 

  48. Nakamura Y, Urashima M, Toyota N, Ono C, Iida M, Fukumoto W, et al. Non-occlusive mesenteric ischemia (NOMI): utility of measuring the diameters of the superior mesenteric artery and superior mesenteric vein at multidetector CT. Jpn J Radiol. 2013;31(11):737–43.

    Google Scholar 

  49. Kanasaki S, Furukawa A, Fumoto K, Hamanaka Y, Ota S, Hirose T, et al. Acute mesenteric ischemia: multidetector CT findings and endovascular management. Radiographics. 2018;38(3):945–61.

    PubMed  Google Scholar 

  50. Inoue A, Ohta S, Nitta N, Yoshimura M, Sonoda H, Shimizu T, et al. Ex vivo MR imaging of colorectal carcinoma before and after formalin fixation: correlation with histopathologic findings. Abdom Radiol (N Y). 2018;43(7):1524–30.

    Google Scholar 

  51. Brown G, Richards CJ, Bourne MW, Newcombe RG, Radcliffe AG, Dallimore NS, et al. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology. 2003;227(2):371–7.

    PubMed  Google Scholar 

  52. Kim JH, Beets GL, Kim MJ, Kessels AG, Beets-Tan RG. High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size? Eur J Radiol. 2004;52(1):78–83.

    PubMed  Google Scholar 

  53. Bettenworth D, Bokemeyer A, Baker M, Mao R, Parker CE, Nguyen T, et al. Assessment of Crohn's disease-associated small bowel strictures and fibrosis on cross-sectional imaging: a systematic review. Gut. 2019;68(6):1115–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim JS, Kim HJ, Hong SM, Park SH, Lee JS, Kim AY, et al. Post-ischemic bowel stricture: CT features in eight cases. Korean J Radiol. 2017;18(6):936–45.

    PubMed  PubMed Central  Google Scholar 

  55. Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol. 2013;304(3):C216–C225225.

    CAS  PubMed  Google Scholar 

  56. Silva AC, Pimenta M, Guimarães LS. Small bowel obstruction: what to look for. Radiographics. 2009;29(29):423–39.

    PubMed  Google Scholar 

  57. Galia M, Agnello F, La Grutta L, Lo Re G, Cabibbo G, Grassedonio E, et al. Computed tomography of bowel obstruction: tricks of the trade. Expert Rev Gastroenterol Hepatol. 2015;9(8):1115–25.

    CAS  PubMed  Google Scholar 

  58. Zhou J, Cong R, Shi J, Chen F, Zhu J, Xiao J, et al. Diagnostic significance of multidetector computed tomography (MDCT) in patients with small bowel obstruction: a meta-analysis. Jpn J Radiol. 2020;38(5):458–62.

    PubMed  Google Scholar 

  59. Idris M, Kashif N, Idris S, Memon WA, Tanveer UH, Haider Z. Accuracy of 64-slice multidetector computed tomography scan in detection of the point of transition of small bowel obstruction. Jpn J Radiol. 2012;30(3):235–41.

    PubMed  Google Scholar 

  60. Sugimoto S, Shimono T, Takeshita T, Yamamoto A, Shindo D, Miki Y. Clinical and CT findings of small bowel obstruction caused by rice cakes in comparison with bezoars. Jpn J Radiol. 2019;37(4):301–7.

    PubMed  Google Scholar 

  61. Furukawa A, Yamasaki M, Furuichi K, Yokoyama K, Nagata T, Takahashi M, et al. Helical CT in the diagnosis of small bowel obstruction. Radiographics. 2001;21(2):341–55.

    CAS  PubMed  Google Scholar 

  62. Regan F, Beall DP, Bohlman ME, Khazan R, Sufi A, Schaefer DC. Fast MR imaging and the detection of small-bowel obstruction. Am J Roentgenol. 1998;185(4):1036–44.

    Google Scholar 

  63. Furukawa A, Yamasaki M, Takahashi M, Nitta N, Tanaka T, Kanasaki S, et al. CT diagnosis of small bowel obstruction: scanning technique, interpretation and role in the diagnosis. Semin Ultrasound CT MR. 2003;24(5):336–52.

    PubMed  Google Scholar 

  64. Rondenet C, Millet I, Corno L, Boulay-Coletta I, Taourel P, Zins M. Increased unenhanced bowel-wall attenuation: a specific sign of bowel necrosis in closed-loop small-bowel obstruction. Eur Radiol. 2018;28(10):4225–333.

    PubMed  Google Scholar 

  65. Millet I, Boutot D, Faget C, Pages-Bouic E, Molinari N, Zins M, et al. Assessment of strangulation in adhesive small bowel obstruction on the basis of combined CT findings: implications for clinical care. Radiology. 2017;285(3):798–808.

    PubMed  Google Scholar 

  66. Kato K, Mizunuma K, Sugiyama M, Sugawara S, Suzuki T, Tomabechi M, et al. Interobserver agreement on the diagnosis of bowel ischemia: assessment using dynamic computed tomography of small bowel obstruction. Jpn J Radiol. 2010;28(10):727–32.

    PubMed  Google Scholar 

  67. Nicolaou S, Kai B, Ho S, Su J, Ahamed K. Imaging of acute small-bowel obstruction. Am J Roentgenol. 2005;185(4):1036–44.

    Google Scholar 

  68. Daimon A, Terai Y, Nagayasu Y, Okamoto A, Sano T, Suzuki Y, et al. A case of intestinal obstruction in pregnancy diagnosed by MRI and treated by intravenous hyperalimentation. Case Rep Obstet Gynecol. 2016;2016:8704035.

    PubMed  PubMed Central  Google Scholar 

  69. Takahara T, Kwee TC, Sadahiro S, Yamashita T, Toyoguchi Y, Yoshizako T, et al. Low b-value diffusion-weighted imaging for diagnosing strangulated small bowel obstruction: a feasibility study. J Magn Reson Imaging. 2011;34(5):1117–24.

    PubMed  Google Scholar 

  70. Kim HC, Yang DM, Kim SW, Park SJ. Gastrointestinal tract perforation: evaluation of MDCT according to perforation site and elapsed time. Eur Radiol. 2014;24(6):1386–93.

    PubMed  Google Scholar 

  71. Oguro S, Funabiki T, Hosoda K, Inoue Y, Yamane T, Sato M, et al. 64-Slice multidetector computed tomography evaluation of gastrointestinal tract perforation site: detectability of direct findings in upper and lower GI tract. Eur Radiol. 2010;20(6):1396–403.

    PubMed  Google Scholar 

  72. Faggian A, Berritto D, Iacobellis F, Reginelli A, Cappabianca S, Grassi R. Imaging patients with alimentary tract perforation: literature review. Semin Ultrasound CT MR. 2016;37(1):66–9.

    PubMed  Google Scholar 

  73. Bertleff MJ, Lange JF. Perforated peptic ulcer disease: a review of history and treatment. Dig Surg. 2010;27(3):161–9.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Enago (https://www.enago.jp) for the English language review.

Funding

This study was not funded by any institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Inoue.

Ethics declarations

Conflict of interest

All authors have no conflict interest of interest to disclose with respect to this article.

Ethical statement

Institutional review board in our institution did not requires to approval for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary. 1 Cine MRI showing normal bowel motility. Small bowel containing a small amount of fluid shows moderate peristalsis. A total of 60 slices are acquired during the 30 s in a cine MRI scan. The frame rate of the movie is 6 frame/sec (actual 3 × speed) (MP4 1175 kb)

Supplementary. 2 Cine MRI of bowel obstruction. The dilated small bowel demonstrates accelerated bowel peristalsis. A total of 60 slices are acquired during the 30 s in a cine MRI scan. The frame rate of the movie is 6 frame/sec (actual 3 × speed) (MP4 1317 kb)

Supplementary. 3 Cine MRI of adynamic ileus. The dilated small bowel in the lower abdomen demonstrates a decreased bowel peristalsis rather than peristalsis that observed in the right upper abdomen. A total of 60 slices are acquired during the 30 s in a cine MRI scan. The frame rate of the movie is 6 frame/sec (actual 3 × speed) (MP4 2081 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, A., Furukawa, A., Takaki, K. et al. Noncontrast MRI of acute abdominal pain caused by gastrointestinal lesions: indications, protocol, and image interpretation. Jpn J Radiol 39, 209–224 (2021). https://doi.org/10.1007/s11604-020-01053-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-01053-w

Keywords

Navigation