Skip to main content

Advertisement

Log in

Role of susceptibility-weighted imaging in patients with idiopathic intracranial hypertension

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the role of susceptibility-weighted imaging (SWI) in patients with idiopathic intracranial hypertension (IIH).

Materials and methods

A prospective study was done on 55 patients with IIH who underwent SWI of the brain. The images were evaluated by two independent readers for cerebral microbleeds (CMBs) and the interobserver agreement between both readers was calculated. The graphic rating scale (GRS) for headache was calculated.

Results

CMBs were found in 16 (29%) of patients with IIH for both readers with excellent interobserver agreement (K = 0.8, p = 0.001). There was excellent interobserver agreement for location (K = 0.8, p = 0.001) and side of CMBs (K = 0.8, p = 0.001). There was good interobserver agreement for size of CMBs (K = 0.75, p = 0.002) and number (K = 0.6, p = 0.006). The mean GRS for headache in patients with CMBs (5.61 ± 1.3) was significantly higher (p = 0.02) than that of patients without CMBs (4.9 ± 0.8).

Conclusion

We concluded that SWI can detect CMBs in patients with IIH especially in  patients with higher GRS for headache.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CMBs:

Cerebral microbleeds

IIH:

Idiopathic intracranial hypertension

GRS:

Graphic rating scale

References

  1. Radojicic A, Vukovic-Cvetkovic V, Pekmezovic T, Trajkovic G, Zidverc-Trajkovic J, Jensen RH. Predictive role of presenting symptoms and clinical findings in idiopathic intracranial hypertension. J Neurol Sci. 2019;399:89–93.

    Article  Google Scholar 

  2. Wall M. Update on idiopathic intracranial hypertension. Neurol Clin. 2017;35:45–57.

    Article  Google Scholar 

  3. Chan JW. Current concepts and strategies in the diagnosis and management of idiopathic intracranial hypertension in adults. J Neurol. 2017;264:1622–33.

    Article  CAS  Google Scholar 

  4. Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15:78–91.

    Article  Google Scholar 

  5. Friedman DI. Headaches in idiopathic intracranial hypertension. J Neuroophthalmol. 2019;39:82–93.

    Article  Google Scholar 

  6. Mollan SP, Hoffmann J, Sinclair AJ. Advances in the understanding of headache in idiopathic intracranial hypertension. Curr Opin Neurol. 2019;32:92–8.

    Article  Google Scholar 

  7. Sina F, Razmeh S, Habibzadeh N, Zavari A, Nabovvati M. Migraine headache in patients with idiopathic intracranial hypertension. Neurol Int. 2017;9:7280.

    Article  Google Scholar 

  8. Bidot S, Saindane AM, Peragallo JH, Bruce BB, Newman NJ, Biousse V. Brain imaging in idiopathic intracranial hypertension. J Neuroophthalmol. 2015;35:400–11.

    Article  Google Scholar 

  9. Zur D, Anconina R, Kesler A, Lublinsky S, Toledano R, Shelef I. Quantitative imaging biomarkers for dural sinus patterns in idiopathic intracranial hypertension. Brain Behav. 2017;7:e00613.

    Article  Google Scholar 

  10. Degnan AJ, Levy LM. Pseudotumor cerebri: brief review of clinical syndrome and imaging findings. AJNR Am J Neuroradiol. 2011;32:1986–93.

    Article  CAS  Google Scholar 

  11. Razek AAKA, Batouty N, Fathy W, Bassiouny R. Diffusion tensor imaging of the optic disc in idiopathic intracranial hypertension. Neuroradiology. 2018;60:1159–66.

    Article  Google Scholar 

  12. Halefoglu AM, Yousem DM. Susceptibility weighted imaging: clinical applications and future directions. World J Radiol. 2018;10:30–45.

    Article  Google Scholar 

  13. Kurz FT, Freitag M, Schlemmer HP, Bendszus M, Ziener CH. Principles and applications of susceptibility weighted imaging. Radiologe. 2016;56:124–36.

    Article  CAS  Google Scholar 

  14. Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD. Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg. 2015;123:1463–75.

    Article  Google Scholar 

  15. Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral microbleeds: imaging and clinical significance. Radiology. 2018;287:11–28.

    Article  Google Scholar 

  16. Humphries TJ, Mathew P. Cerebral microbleeds: hearing through the silence—a narrative review. Curr Med Res Opin. 2018;35:1–15.

    Google Scholar 

  17. Yeoh H, Lee JY, Lee YJ, Park DW, Kim TY, Ahn GY, et al. Relationship between cerebral microbleeds and white matter MR hyperintensities in systemic lupus erythematosus: a retrospective observational study. Neuroradiology. 2019;61:265–74.

    Article  Google Scholar 

  18. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jäger HR, et al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology. 2009;73:1759–66.

    Article  CAS  Google Scholar 

  19. Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81:1159–65.

    Article  Google Scholar 

  20. Haefeli M, Achim E. Pain assessment. Eur Spine J. 2006;15(1):17–24.

    Article  Google Scholar 

  21. Lenck S, Radovanovic I, Nicholson P, Hodaie M, Krings T, Mendes-Pereira V. Idiopathic intracranial hypertension: the veno glymphatic connections. Neurology. 2018;91:515–22.

    Article  Google Scholar 

  22. Bezerra MLS, Ferreira ACAF, de Oliveira-Souza R. Pseudotumor Cerebri and glymphatic dysfunction. Front Neurol. 2018;8:734.

    Article  Google Scholar 

  23. Madriz Peralta G, Cestari DM. An update of idiopathic intracranial hypertension. Curr Opin Ophthalmol. 2018;29:495–502.

    Article  Google Scholar 

  24. Tsushima Y, Tanizaki Y, Aoki J, Endo K. MR detection of microhemorrhages in neurologically healthy adults. Neuroradiology. 2002;44:31–6.

    Article  CAS  Google Scholar 

  25. Abdel Razek AA, Alvarez H, Bagg S, Refaat S, Castillo M. Imaging spectrum of CNS vasculitis. Radiographics. 2014;34:873–94.

    Article  Google Scholar 

  26. Huang X, Lu T, Guo Z, Wei L, Chen S, Qiu W, et al. Susceptibility-weighted imaging in the differential diagnosis of autoimmune central nervous system vasculitis and multiple sclerosis. Mult Scler Relat Disord. 2019;33:70–4.

    Article  Google Scholar 

  27. McKinney AM, Sarikaya B, Gustafson C, Truwit C. Detection of microhemorrhage in posterior reversible encephalopathy syndrome using susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2012;33:896–903.

    Article  CAS  Google Scholar 

  28. Suzuki T, Okamoto K, Genkai N, Kakita A, Abe H. A homogeneously enhancing mass evolving into multiple hemorrhagic and necrotic lesions in amoebic encephalitis with necrotizing vasculitis. Clin Imaging. 2019;60:48–52.

    Article  Google Scholar 

  29. Abdel Razek AAK. Routine and advanced diffusion imaging modules of the salivary glands. Neuroimaging Clin N Am. 2018;28:245–54.

    Article  Google Scholar 

  30. Sepahdari AR, Politi LS, Aakalu VK, Kim HJ, Razek AA. Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate. AJNR Am J Neuroradiol. 2014;35:170–5.

    Article  CAS  Google Scholar 

  31. Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology. 2018;60:169–77.

    Article  Google Scholar 

  32. El-Serougy L, Abdel Razek AA, Ezzat A, Eldawoody H, El-Morsy A. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J. 2016;29:400–7.

    Article  Google Scholar 

  33. Khalek Abdel Razek AA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of primary central nervous system lymphoma from glioblastoma: quantitative analysis using arterial-spin labeling and diffusion tensor imaging. World Neurosurg. 2019;123:303–9.

    Article  Google Scholar 

  34. Razek AA, Nada N. Correlation of choline/creatine and apparent diffusion coefficient values with the prognostic parameters of head and neck squamous cell carcinoma. NMR Biomed. 2016;29:483–9.

    Article  Google Scholar 

Download references

Funding

No funding was provided for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdel Khalek Abdel Razek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razek, A.A.K.A., Batouty, N.M. & Azab, A.G. Role of susceptibility-weighted imaging in patients with idiopathic intracranial hypertension. Jpn J Radiol 38, 740–745 (2020). https://doi.org/10.1007/s11604-020-00959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-00959-9

Keywords

Navigation