Skip to main content

Advertisement

Log in

Improvement of image quality at CT and MRI using deep learning

  • Invited Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Deep learning has been developed by computer scientists. Here, we discuss techniques for improving the image quality of diagnostic computed tomography and magnetic resonance imaging with the aid of deep learning. We categorize the techniques for improving the image quality as “noise and artifact reduction”, “super resolution” and “image acquisition and reconstruction”. For each category, we present and outline the features of some studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Giger ML. Machine learning in medical imaging. J Am Coll Radiol JACR. 2018. https://doi.org/10.1016/j.jacr.2017.12.028.

    Article  PubMed  Google Scholar 

  2. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018. https://doi.org/10.1148/radiol.2018171820.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017. https://doi.org/10.1148/rg.2017160130.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018. https://doi.org/10.1007/s11604-018-0726-3.

    Article  PubMed  Google Scholar 

  5. Noguchi T, Higa D, Asada T, Kawata Y, Machitori A, Shida Y, et al. Artificial intelligence using neural network architecture for radiology (AINNAR): classification of MR imaging sequences. Jpn J Radiol. 2018. https://doi.org/10.1007/s11604-018-0779-3.

    Article  PubMed  Google Scholar 

  6. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017. https://doi.org/10.1148/rg.2017170077.

    Article  PubMed  Google Scholar 

  7. Kunimatsu A, Kunimatsu N, Yasaka K, Akai H, Kamiya K, Watadani T, et al. Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci. 2018. https://doi.org/10.2463/mrms.mp.2017-0178.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. Trans Image Proc. 2017. https://doi.org/10.1109/tip.2017.2662206.

    Article  Google Scholar 

  9. Cavigelli L, Hager P, Benini L. CAS-CNN: a deep convolutional neural network for image compression artifact suppression. Int Jt Conf Neural Netw (IJCNN). 2017;2017:752–9.

    Google Scholar 

  10. Svoboda P, Hradis M, Barina D, Zemcik P. Compression artifacts removal using convolutional neural networks. J WSCG. 2016;24(2):63–72.

    Google Scholar 

  11. Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016. https://doi.org/10.1109/TPAMI.2015.2439281.

    Article  PubMed  Google Scholar 

  12. Freeman WT, Jones TR, Pasztor EC. Example-based super-resolution. IEEE Comput Graph Appl. 2002. https://doi.org/10.1109/38.988747.

    Article  Google Scholar 

  13. Iizuka S, Simo-Serra E, Ishikawa H. Let there be color! ACM Trans Graph. 2016. https://doi.org/10.1145/2897824.2925974.

    Article  Google Scholar 

  14. Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior. 2017. arXiv:1711.10925v2.

  15. Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017. https://doi.org/10.1364/boe.8.000679.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Du W, Chen H, Wu Z, Sun H, Liao P, Zhang Y. Stacked competitive networks for noise reduction in low-dose CT. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0190069.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys. 2017. https://doi.org/10.1002/mp.12344.

    Article  PubMed  Google Scholar 

  18. Jiang D, Dou W, Vosters L, Xu X, Sun Y, Tan T. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn J Radiol. 2018. https://doi.org/10.1007/s11604-018-0758-8.

    Article  PubMed  Google Scholar 

  19. Zhang Y, Yu H. Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans Med Imaging. 2018. https://doi.org/10.1109/TMI.2018.2823083.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim KH, Park SH. Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI. Magn Reson Imaging. 2017. https://doi.org/10.1016/j.mri.2016.11.020.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magn Reson Med. 2018. https://doi.org/10.1002/mrm.27480.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2017. https://doi.org/10.1007/s10278-017-0033-z.

    Article  PubMed Central  Google Scholar 

  23. Park J, Hwang D, Kim KY, Kang SK, Kim YK, Lee JS. Computed tomography super-resolution using deep convolutional neural network. Phys Med Biol. 2018. https://doi.org/10.1088/1361-6560/aacdd4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu C, Wu X, Yu X, Tang Y, Zhang J, Zhou J. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction. Biomed Eng Online. 2018. https://doi.org/10.1186/s12938-018-0546-9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu D, Kim K, El Fakhri G, Li Q. Iterative low-dose CT reconstruction with priors trained by artificial neural network. IEEE Trans Med Imaging. 2017. https://doi.org/10.1109/tmi.2017.2753138.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017. https://doi.org/10.1109/tip.2017.2713099.

    Article  Google Scholar 

  27. Kida S, Nakamoto T, Nakano M, Nawa K, Haga A, Kotoku J, et al. Cone beam computed tomography image quality improvement using a deep convolutional neural network. Cureus. 2018. https://doi.org/10.7759/cureus.2548.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018. https://doi.org/10.1038/nature25988.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn Reson Med. 2018. https://doi.org/10.1002/mrm.27106.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Samann P, et al. q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging. 2016. https://doi.org/10.1109/tmi.2016.2551324.

    Article  PubMed  Google Scholar 

  31. Higaki T, Nishimaru E, Nakamura Y, Tatsugami F, Zhou J, Yu Z, et al. Radiation dose reduction in CT using deep learning based reconstruction (DLR): a phantom study. In: Proceeding of the 24th European congress of radiology. 2018. https://doi.org/10.1594/ecr2018/c-1656.

  32. Nakamura Y, Higaki T, Tatsugami F, Zhou J, Yu Z, Akino N, et al. Deep learning based reconstruction at CT: initial clinical trial targeting hypovascular hepatic metastases. Radiol Artif Intell. 2018. (Accepted).

  33. Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, et al. Improvement of image quality at coronary CT angiography by using a deep learning based reconstruction. Eur Radiol. 2018. (Accepted).

  34. Touch M, Clark DP, Barber W, Badea CT. A neural network-based method for spectral distortion correction in photon counting X-ray CT. Phys Med Biol. 2016. https://doi.org/10.1088/0031-9155/61/16/6132.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xiang L, Wang Q, Nie D, Zhang L, Jin X, Qiao Y, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med Image Anal. 2018. https://doi.org/10.1016/j.media.2018.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Kazuo Awai received following research grant: Research Grant, Canon Medical systems, paid to the institution. Research Grant, Hitachi, paid to the institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Higaki.

Ethics declarations

Conflict of interest

The other authors declare that they have no conflict of interest.

Ethical statement

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higaki, T., Nakamura, Y., Tatsugami, F. et al. Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37, 73–80 (2019). https://doi.org/10.1007/s11604-018-0796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0796-2

Keywords

Navigation