Skip to main content
Log in

Changes in the ADC of diffusion-weighted MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences in substrate viscosities

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Compared with the conventional pulsed gradient spin-echo (PGSE) sequence, diffusion-weighted imaging (DWI) with the oscillating gradient spin-echo (OGSE) sequence can shorten the diffusion time by changing the frequency. The purpose was to investigate whether n-alkanes are suitable as isotropic phantoms for estimating the diffusion coefficient with the OGSE sequence.

Materials and methods

We investigated changes in the apparent diffusion coefficient (ADC) due to differences in the viscosities of nine n-alkane phantoms with different numbers of carbon atoms from C8H18 to C16H34 using OGSE and PGSE sequences at 21 °C. Effective diffusion times of 4.3, 5.1, 6.5, 9.3, 20, 40, and 60 ms were used. The T2 relaxation times of each n-alkane phantom were measured using quantitative synthetic magnetic resonance imaging (MRI). Circular regions of interest were placed manually within the alkane phantoms on ADC and T2 maps.

Results

In each alkane phantom, changes in mean ADC values were almost constant with changes in diffusion times. Viscosities and ADC values showed inverse proportionality, as expected theoretically.

Conclusion

The ADC values of alkanes do not depend on diffusion times. The n-alkanes can be useful phantoms for assessing the accuracy of clinical protocols of DWI with the OGSE sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin M. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review. Magn Reson Insights. 2013;6:59–64.

    PubMed  PubMed Central  Google Scholar 

  2. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  3. Does MD, Parsons EC, Gore JC. Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn Reson Med. 2003;49:206–15.

    Article  PubMed  Google Scholar 

  4. Aggarwal M, Jones MV, Calabresi PA, Mori S, Zhang J. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med. 2012;67:98–109.

    Article  PubMed  Google Scholar 

  5. Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med. 2014;72:1366–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Novikov DS, Jensen JH, Helpern JA, Fieremans E. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA. 2014;111:5088–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994;32:579–83.

    Article  PubMed  CAS  Google Scholar 

  8. Beaulieu C, Allen PS. An in vitro evaluation of the effects of local magnetic-susceptibility-induced gradients on anisotropic water diffusion in nerve. Magn Reson Med. 1996;36:39–44.

    Article  PubMed  CAS  Google Scholar 

  9. Stanisz GJ, Henkelman RM. Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med. 1998;40:405–10.

    Article  PubMed  CAS  Google Scholar 

  10. Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, et al. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med. 2000;43:368–74.

    Article  PubMed  CAS  Google Scholar 

  11. Lide DR, editor. CRC handbook of chemistry and physics. 78th ed. New York: CRC Press; 1997.

    Google Scholar 

  12. Van AT, Holdsworth SJ, Bammer R. In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn Reson Med. 2014;71:83–94.

    Article  PubMed  Google Scholar 

  13. Hagiwara A, Warntjes M, Hori M, Andica C, Nakazawa M, Kumamaru KK, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Investig Radiol. 2017;52:647–57.

    Article  Google Scholar 

  14. Hagiwara A, Nakazawa M, Andica C, Tsuruta K, Takano N, Hori M, et al. Dural enhancement in a patient with Sturge-Weber syndrome revealed by double inversion recovery contrast using synthetic MRI. Magn Reson Med Sci. 2016;15:151–2.

    Article  PubMed  Google Scholar 

  15. Krauss W, Gunnarsson M, Andersson T, Thunberg P. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging. 2015;33:584–91.

    Article  PubMed  Google Scholar 

  16. Jansen JF, Kooi ME, Kessels AG, Nicolay K, Backes WH. Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor imaging, and 1H magnetic resonance spectroscopy at 3.0 tesla. Investig Radiol. 2007;42:327–37.

    Article  Google Scholar 

  17. Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, et al. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010;51:1384–94.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parsons EC Jr, Does MD, Gore JC. Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients. Magn Reson Med. 2006;55:75–84.

    Article  PubMed  Google Scholar 

  19. Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med. 2016;75:1076–85.

    Article  PubMed  Google Scholar 

  20. Kloska SP, Wintermark M, Engelhorn T, Fiebach JB. Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology. 2010;52:189–201.

    Article  PubMed  Google Scholar 

  21. Beauchamp NJ Jr, Ulug AM, Passe TJ, van Zijl PC. MR diffusion imaging in stroke: review and controversies. Radiographics. 1998;18:1269–83 (discussion 1283–5).

    Article  PubMed  Google Scholar 

  22. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.

    Article  PubMed  CAS  Google Scholar 

  23. Baron CA, Kate M, Gioia L, Butcher K, Emery D, Budde M, et al. Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke. 2015;46:2136–41.

    Article  PubMed  Google Scholar 

  24. Hori M, Irie R, Suzuki M, Aoki S. Teaching neuroimages: obscured cerebral infarction on MRI. Clin Neuroradiol. 2017. https://doi.org/10.1007/s00062-017-0576-x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Andica C, Hori M, Kamiya K, Koshino S, Hagiwara A, Kamagata K, et al. Spatial restriction of intracranial epidermoid cysts analyzed using diffusion-weighted imaging with shorter diffusion times. Magn Reson Med Sci. 2017. https://doi.org/10.2463/mrms.cr.2017-0111.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leuthardt EC, Wippold FJ 2nd, Oswood MC, Rich KM. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol. 2002;58:395–402 (discussion 402).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Karolinska University for providing QRAPMASTER to us.

Funding

This study was supported in part by a High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Maekawa.

Ethics declarations

Conflict of interest

K Murata and Thorsten Feiweier are employees of Siemens Healthcare. The remaining authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors. This study received the approval of the institutional review board of our hospital.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maekawa, T., Hori, M., Murata, K. et al. Changes in the ADC of diffusion-weighted MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences in substrate viscosities. Jpn J Radiol 36, 415–420 (2018). https://doi.org/10.1007/s11604-018-0737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0737-0

Keywords

Navigation