Skip to main content

Advertisement

Log in

Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

The activity of the glymphatic system is impaired in animal models of Alzheimer’s disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS).

Materials and methods

Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score.

Results

We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity.

Conclusion

Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11.

    Article  Google Scholar 

  2. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, et al. Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014;11:12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okudera T, Huang YP, Fukusumi A, Nakamura Y, Hatazawa J, Uemura K. Micro-angiographical studies of the medullary venous system of the cerebral hemisphere. Neuropathology. 1999;19(1):93–111.

    Article  CAS  PubMed  Google Scholar 

  7. Reisberg B, Prichep L, Mosconi L, John ER, Glodzik-Sobanska L, Boksay I, et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimers Dement. 2008;4(1 Suppl 1):S98–108.

    Article  PubMed  Google Scholar 

  8. Masutani Y, Aoki S, Abe O, Hayashi N, Otomo K. MR diffusion tensor imaging: recent advance and new techniques for diffusion tensor visualization. Eur J Radiol. 2003;46(1):53–66.

    Article  PubMed  Google Scholar 

  9. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–25.

    Article  CAS  PubMed  Google Scholar 

  10. Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener. 2016;11(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2016;74(1):91–9.

    Article  Google Scholar 

  12. Tali ET, Ercan N, Krumina G, Rudwan M, Mironov A, Zeng QY, et al. Intrathecal gadolinium (gadopentetate dimeglumine) enhanced magnetic resonance myelography and cisternography: results of a multicenter study. Invest Radiol. 2002;37(3):152–9.

    Article  PubMed  Google Scholar 

  13. Oner AY, Barutcu B, Aykol S, Tali ET. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition? Invest Radiol 2016. doi:10.1097/RLI.0000000000000327

  14. Samardzic D, Thamburaj K. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy. J Neuroimaging. 2015;25(1):136–9.

    Article  PubMed  Google Scholar 

  15. Naganawa S, Nakane T, Kawai H, Taoka T. Gd-based contrast enhancement of the perivascular spaces in the basal ganglia. Magn Reson Med Sci. 2016;16(1):61–5.

    Article  PubMed  Google Scholar 

  16. Naganawa S, Suzuki K, Yamazaki M, Sakurai Y. Serial scans in healthy volunteers following intravenous administration of gadoteridol: time course of contrast enhancement in various cranial fluid spaces. Magn Reson Med Sci. 2014;13(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  17. Taoka T, Fukusumi A, Miyasaka T, Kawai H, Nakane T, Kichikawa K, et al. Structure of the medullary veins of the cerebral hemisphere and related disorders. Radiographics. 2017;37(1):281–97.

    Article  PubMed  Google Scholar 

  18. Fellgiebel A, Yakushev I. Diffusion tensor imaging of the hippocampus in MCI and early Alzheimer’s disease. J Alzheimers Dis. 2011;26(Suppl 3):257–62.

    PubMed  Google Scholar 

  19. Huang H, Fan X, Weiner M, Martin-Cook K, Xiao G, Davis J, et al. Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiol Aging. 2012;33(9):2029–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by Grant-in-Aid for Scientific Research (Grant Nos. 16K10312 and 26461834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Taoka.

Ethics declarations

Ethical statement

All applicable institutional and/or national guidelines for care were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taoka, T., Masutani, Y., Kawai, H. et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol 35, 172–178 (2017). https://doi.org/10.1007/s11604-017-0617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-017-0617-z

Keywords

Navigation