Abnormal regional homogeneity and functional connectivity in adjustment disorder of new recruits: a resting-state fMRI study

Abstract

Purpose

To explore the regional spontaneous neural activity and functional connectivity alterations of adjustment disorder (AD) in new recruits with in vivo resting-state functional MR (rs-fMRI).

Materials and methods

Resting-state fMRI was performed in 31 recruits with AD and in 31 control recruits. Regional homogeneity (ReHo) was used to detect the regional synchronizing features of neuronal activations. Correlative analysis was performed to investigate the relationship between the Symptom Check List-90 (SCL-90) score and ReHo in regions with significant group differences. Regions with significant correlation were then defined as regions of interest (ROIs), and seed-ROI based whole-brain functional connectivity was performed.

Results

Compared with the controls, patients with AD had significantly lower ReHo in the left posterior cerebellar lobe, bilateral medial orbitofrontal cortex, bilateral caudate and left middle temporal gyrus, whereas regions with enhanced ReHo were confined to bilateral posterior cingulate gyrus/precuneus. Only the left posterior cerebellar lobe showed significant correlation between ReHo and the SCL-90 score, and was defined as the seed ROI. Decreased functional connectivity was found between the ROI and bilateral supplementary motor area.

Conclusion

This study reveals abnormalities in recruits with AD in baseline brain function activities, which could further improve our understanding of the neural substrates of cognitive impairment in AD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Mittal VA, Walker EF. Diagnostic and statistical manual of mental disorders. Psychiatry Res. 2011;189(1):158–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Pelkonen M, Marttunen M, Henriksson M, Lonnqvist J. Suicidality in adjustment disorder—clinical characteristics of adolescent outpatients. Eur Child Adolesc Psychiatry. 2005;14(3):174–80.

    Article  PubMed  Google Scholar 

  3. 3.

    Hund B, Reuter K, Harter M, Brahler E, Faller H, Keller M, et al. Stressors, symptom profile, and predictors of adjustment disorder in cancer patients. Results from an epidemiological study with the composite international diagnostic interview, adaptation for oncology (Cidi-O). Depress Anxiety. 2016;33(2):153–61.

    Article  PubMed  Google Scholar 

  4. 4.

    Kovacs M, Gatsonis C, Pollock M, Parrone PL. A controlled prospective study of DSM-III adjustment disorder in childhood. Short-term prognosis and long-term predictive validity. Arch Gen Psychiatry. 1994;51(7):535–41.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    De Hepcee C, Reynaert C, Jacques D, Zdanowicz N. Suicide in adolescence: attempt to cure a crisis, but also the fatal outcome of certain pathologies. Psychiatr Danub. 2015;27(Suppl 1):296–9.

    Google Scholar 

  6. 6.

    Monahan P, Hu Z, Rohrbeck P. Mental disorders and mental health problems among recruit trainees, US Armed Forces, 2000–2012. MSMR. 2013;20(7):13–8 (discussion 6–8).

    PubMed  Google Scholar 

  7. 7.

    JunSheng Z, Kai W, JiaTong W, Wei X. Investigation on mental health and survival ability of recruits. J Fourth Mil Med Univ. 2009;30(11):1045–7.

    Google Scholar 

  8. 8.

    Lung FWLF, Shu BC. The premorbid personality in military students with adjustment disorder. Mil Psychol. 2006;18:77–88.

    Article  Google Scholar 

  9. 9.

    Derogatis LR, Cleary PA. Confirmation of the dimensional structure of the SCL-90: a study in construct validation. J Clin Psychol. 1977;33(4):981–9.

    Article  Google Scholar 

  10. 10.

    Zhang J, Zhang X. Chinese college students’ SCL-90 scores and their relations to the college performance. Asian J Psychiatry. 2013;6(2):134–40.

    Article  Google Scholar 

  11. 11.

    Kumano H, Ida I, Oshima A, Takahashi K, Yuuki N, Amanuma M, et al. Brain metabolic changes associated with predisposition to onset of major depressive disorder and adjustment disorder in cancer patients—a preliminary PET study. J Psychiatr Res. 2007;41(7):591–9.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Jeong HG, Ko YH, Han C, Kim YK, Joe SH. Distinguishing quantitative electroencephalogram findings between adjustment disorder and major depressive disorder. Psychiatry investigation. 2013;10(1):62–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Di X, Biswal BB, Alzheimer’s Disease Neuroimaging I. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connect. 2012;2(5):275–83.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yao Z, Wang L, Lu Q, Liu H, Teng G. Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord. 2009;115(3):430–8.

    Article  PubMed  Google Scholar 

  15. 15.

    Ke M, Zou R, Shen H, Huang X, Zhou Z, Liu Z. Bilateral functional asymmetry disparity in positive and negative schizophrenia revealed by resting-state fMRI. Psychiatry Res Neuroimaging. 2010;182(1):30–9.

    Article  PubMed  Google Scholar 

  16. 16.

    Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22(1):394–400.

    Article  PubMed  Google Scholar 

  17. 17.

    Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.

    Article  PubMed  Google Scholar 

  18. 18.

    Albert NB, Robertson EM, Miall RC. The resting human brain and motor learning. Curr Biol. 2009;19(12):1023–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zuo X-N, Xu T, Jiang L, Yang Z, Cao X-Y, He Y, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage. 2013;65:374–86.

    Article  PubMed  Google Scholar 

  20. 20.

    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ledberg A, Akerman S, Roland PE. Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage. 1998;8(2):113–28.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216.

    Article  PubMed  Google Scholar 

  23. 23.

    Chen J, Fan C, Li J, Han Q, Lin J, Yang T, et al. Increased intraregional synchronized neural activity in adult brain after prolonged adaptation to high-altitude hypoxia: a resting-state fMRI study. High Alt Med Biol. 2016;17(1):16–24.

    Article  PubMed  Google Scholar 

  24. 24.

    Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res. 2010;1321:169–79.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Ke M, Zou R, Shen H, Huang X, Zhou Z, Liu Z, et al. Bilateral functional asymmetry disparity in positive and negative schizophrenia revealed by resting-state fMRI. Psychiatry Res. 2010;182(1):30–9.

    Article  PubMed  Google Scholar 

  26. 26.

    Zhang Z, Liu Y, Jiang T, Zhou B, An N, Dai H, et al. Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity. Neuroimage. 2012;59(2):1429–40.

    Article  PubMed  Google Scholar 

  27. 27.

    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology. 2009;34(4):932–43.

    Article  PubMed  Google Scholar 

  29. 29.

    Marchand WR, Lee JN, Johnson S, Thatcher J, Gale P, Wood N, et al. Striatal and cortical midline circuits in major depression: implications for suicide and symptom expression. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(2):290–9.

    Article  PubMed  Google Scholar 

  30. 30.

    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71(4):286–93.

    Article  PubMed  Google Scholar 

  31. 31.

    Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563–93.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:52.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lee HY, Tae WS, Yoon HK, Lee BT, Paik JW, Son KR, et al. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord. 2011;133(1–2):128–36.

    Article  PubMed  Google Scholar 

  37. 37.

    Yin Y, Li L, Jin C, Hu X, Duan L, Eyler LT, et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett. 2011;498(3):185–9.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Wei XH, Ren JL, Liu WH, Yang RM, Xu XD, Liu J, et al. Increased interhemispheric functional connectivity in college students with non-clinical depressive symptoms in resting state. Neurosci Lett. 2015;589:67–72.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48(8):813–29.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Maddock RJ. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 1999;22(7):310–6.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Zhang YQM, Xie B, et al. Brain’s default network in patients with post-traumatic stress disorder at resting state. J Third Mil Med Univ. 2011;33:2271–3.

    Google Scholar 

  42. 42.

    Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA. 2009;106(47):20069–74.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Yin Y, Jin C, Eyler LT, Jin H, Hu X, Duan L, et al. Altered regional homogeneity in post-traumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Bull. 2012;28(5):541–9.

    Article  PubMed  Google Scholar 

  44. 44.

    Brunet E, Sarfati Y, Hardy-Bayle MC, Decety J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage. 2000;11(2):157–66.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Zhong WJ, Zhou ZM, Zhao JN, Wu W, Guo DJ. Abnormal spontaneous brain activity in minimal hepatic encephalopathy: resting-state fMRI study. Diagn Interv Radiol. 2016;22(2):196–200.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hund B, Reuter K, Harter M, Brahler E, Faller H, Keller M, et al. Stressors, symptom profile, and predictors of adjustment disorder in cancer patients. Results from an epidemiological study with the composite international diagnostic interview, adaptation for oncology (Cidi-O). Depress Anxiety. 2016;33(2):153–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Grand of Nanjing Command, PLA, China (10Z030).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ziqian Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study was approved by the ethics committee and the institutional review board of Fuzhou General Hospital, Second Military Medical University. All patients provided written informed consent.

Additional information

Co-first author: Y. Lin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Lin, Y., Chen, J. et al. Abnormal regional homogeneity and functional connectivity in adjustment disorder of new recruits: a resting-state fMRI study. Jpn J Radiol 35, 151–160 (2017). https://doi.org/10.1007/s11604-017-0614-2

Download citation

Keywords

  • Adjustment disorder
  • New recruits
  • Resting state fMRI
  • Regional homogeneity
  • Functional connectivity