Japanese Journal of Radiology

, Volume 35, Issue 4, pp 151–160 | Cite as

Abnormal regional homogeneity and functional connectivity in adjustment disorder of new recruits: a resting-state fMRI study

  • Hui Li
  • Yuning Lin
  • Ji Chen
  • Xiaoyang Wang
  • Qingqing Wu
  • Qi Li
  • Ziqian Chen
Original Article



To explore the regional spontaneous neural activity and functional connectivity alterations of adjustment disorder (AD) in new recruits with in vivo resting-state functional MR (rs-fMRI).

Materials and methods

Resting-state fMRI was performed in 31 recruits with AD and in 31 control recruits. Regional homogeneity (ReHo) was used to detect the regional synchronizing features of neuronal activations. Correlative analysis was performed to investigate the relationship between the Symptom Check List-90 (SCL-90) score and ReHo in regions with significant group differences. Regions with significant correlation were then defined as regions of interest (ROIs), and seed-ROI based whole-brain functional connectivity was performed.


Compared with the controls, patients with AD had significantly lower ReHo in the left posterior cerebellar lobe, bilateral medial orbitofrontal cortex, bilateral caudate and left middle temporal gyrus, whereas regions with enhanced ReHo were confined to bilateral posterior cingulate gyrus/precuneus. Only the left posterior cerebellar lobe showed significant correlation between ReHo and the SCL-90 score, and was defined as the seed ROI. Decreased functional connectivity was found between the ROI and bilateral supplementary motor area.


This study reveals abnormalities in recruits with AD in baseline brain function activities, which could further improve our understanding of the neural substrates of cognitive impairment in AD.


Adjustment disorder New recruits Resting state fMRI Regional homogeneity Functional connectivity 



This research was supported by Grand of Nanjing Command, PLA, China (10Z030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study was approved by the ethics committee and the institutional review board of Fuzhou General Hospital, Second Military Medical University. All patients provided written informed consent.


  1. 1.
    Mittal VA, Walker EF. Diagnostic and statistical manual of mental disorders. Psychiatry Res. 2011;189(1):158–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pelkonen M, Marttunen M, Henriksson M, Lonnqvist J. Suicidality in adjustment disorder—clinical characteristics of adolescent outpatients. Eur Child Adolesc Psychiatry. 2005;14(3):174–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Hund B, Reuter K, Harter M, Brahler E, Faller H, Keller M, et al. Stressors, symptom profile, and predictors of adjustment disorder in cancer patients. Results from an epidemiological study with the composite international diagnostic interview, adaptation for oncology (Cidi-O). Depress Anxiety. 2016;33(2):153–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Kovacs M, Gatsonis C, Pollock M, Parrone PL. A controlled prospective study of DSM-III adjustment disorder in childhood. Short-term prognosis and long-term predictive validity. Arch Gen Psychiatry. 1994;51(7):535–41.CrossRefPubMedGoogle Scholar
  5. 5.
    De Hepcee C, Reynaert C, Jacques D, Zdanowicz N. Suicide in adolescence: attempt to cure a crisis, but also the fatal outcome of certain pathologies. Psychiatr Danub. 2015;27(Suppl 1):296–9.Google Scholar
  6. 6.
    Monahan P, Hu Z, Rohrbeck P. Mental disorders and mental health problems among recruit trainees, US Armed Forces, 2000–2012. MSMR. 2013;20(7):13–8 (discussion 6–8).PubMedGoogle Scholar
  7. 7.
    JunSheng Z, Kai W, JiaTong W, Wei X. Investigation on mental health and survival ability of recruits. J Fourth Mil Med Univ. 2009;30(11):1045–7.Google Scholar
  8. 8.
    Lung FWLF, Shu BC. The premorbid personality in military students with adjustment disorder. Mil Psychol. 2006;18:77–88.CrossRefGoogle Scholar
  9. 9.
    Derogatis LR, Cleary PA. Confirmation of the dimensional structure of the SCL-90: a study in construct validation. J Clin Psychol. 1977;33(4):981–9.CrossRefGoogle Scholar
  10. 10.
    Zhang J, Zhang X. Chinese college students’ SCL-90 scores and their relations to the college performance. Asian J Psychiatry. 2013;6(2):134–40.CrossRefGoogle Scholar
  11. 11.
    Kumano H, Ida I, Oshima A, Takahashi K, Yuuki N, Amanuma M, et al. Brain metabolic changes associated with predisposition to onset of major depressive disorder and adjustment disorder in cancer patients—a preliminary PET study. J Psychiatr Res. 2007;41(7):591–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Jeong HG, Ko YH, Han C, Kim YK, Joe SH. Distinguishing quantitative electroencephalogram findings between adjustment disorder and major depressive disorder. Psychiatry investigation. 2013;10(1):62–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Di X, Biswal BB, Alzheimer’s Disease Neuroimaging I. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connect. 2012;2(5):275–83.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yao Z, Wang L, Lu Q, Liu H, Teng G. Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord. 2009;115(3):430–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Ke M, Zou R, Shen H, Huang X, Zhou Z, Liu Z. Bilateral functional asymmetry disparity in positive and negative schizophrenia revealed by resting-state fMRI. Psychiatry Res Neuroimaging. 2010;182(1):30–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22(1):394–400.CrossRefPubMedGoogle Scholar
  17. 17.
    Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Albert NB, Robertson EM, Miall RC. The resting human brain and motor learning. Curr Biol. 2009;19(12):1023–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zuo X-N, Xu T, Jiang L, Yang Z, Cao X-Y, He Y, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage. 2013;65:374–86.CrossRefPubMedGoogle Scholar
  20. 20.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ledberg A, Akerman S, Roland PE. Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage. 1998;8(2):113–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen J, Fan C, Li J, Han Q, Lin J, Yang T, et al. Increased intraregional synchronized neural activity in adult brain after prolonged adaptation to high-altitude hypoxia: a resting-state fMRI study. High Alt Med Biol. 2016;17(1):16–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res. 2010;1321:169–79.CrossRefPubMedGoogle Scholar
  25. 25.
    Ke M, Zou R, Shen H, Huang X, Zhou Z, Liu Z, et al. Bilateral functional asymmetry disparity in positive and negative schizophrenia revealed by resting-state fMRI. Psychiatry Res. 2010;182(1):30–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Z, Liu Y, Jiang T, Zhou B, An N, Dai H, et al. Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity. Neuroimage. 2012;59(2):1429–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology. 2009;34(4):932–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Marchand WR, Lee JN, Johnson S, Thatcher J, Gale P, Wood N, et al. Striatal and cortical midline circuits in major depression: implications for suicide and symptom expression. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(2):290–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71(4):286–93.CrossRefPubMedGoogle Scholar
  31. 31.
    Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:52.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lee HY, Tae WS, Yoon HK, Lee BT, Paik JW, Son KR, et al. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord. 2011;133(1–2):128–36.CrossRefPubMedGoogle Scholar
  37. 37.
    Yin Y, Li L, Jin C, Hu X, Duan L, Eyler LT, et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett. 2011;498(3):185–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Wei XH, Ren JL, Liu WH, Yang RM, Xu XD, Liu J, et al. Increased interhemispheric functional connectivity in college students with non-clinical depressive symptoms in resting state. Neurosci Lett. 2015;589:67–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48(8):813–29.CrossRefPubMedGoogle Scholar
  40. 40.
    Maddock RJ. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 1999;22(7):310–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang YQM, Xie B, et al. Brain’s default network in patients with post-traumatic stress disorder at resting state. J Third Mil Med Univ. 2011;33:2271–3.Google Scholar
  42. 42.
    Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA. 2009;106(47):20069–74.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yin Y, Jin C, Eyler LT, Jin H, Hu X, Duan L, et al. Altered regional homogeneity in post-traumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Bull. 2012;28(5):541–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Brunet E, Sarfati Y, Hardy-Bayle MC, Decety J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage. 2000;11(2):157–66.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhong WJ, Zhou ZM, Zhao JN, Wu W, Guo DJ. Abnormal spontaneous brain activity in minimal hepatic encephalopathy: resting-state fMRI study. Diagn Interv Radiol. 2016;22(2):196–200.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hund B, Reuter K, Harter M, Brahler E, Faller H, Keller M, et al. Stressors, symptom profile, and predictors of adjustment disorder in cancer patients. Results from an epidemiological study with the composite international diagnostic interview, adaptation for oncology (Cidi-O). Depress Anxiety. 2016;33(2):153–61.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Radiological Society 2017

Authors and Affiliations

  • Hui Li
    • 1
  • Yuning Lin
    • 1
  • Ji Chen
    • 1
  • Xiaoyang Wang
    • 1
  • Qingqing Wu
    • 1
  • Qi Li
    • 2
  • Ziqian Chen
    • 1
  1. 1.Department of Medical Imaging, Fuzhou General HospitalSecond Military Medical UniversityFuzhouChina
  2. 2.Department of Psychiatry, Fuzhou General HospitalSecond Military Medical UniversityFuzhouChina

Personalised recommendations