Skip to main content
Log in

Prognostic value of lower limb perfusion single-photon emission computed tomography-computed tomography in patients with lower limb atherosclerotic peripheral artery disease

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to estimate the severity of the participants’ lower limb ischemia by calculating the lower limb muscle-to-background ratio (LMBR) using lower limb perfusion single-photon emission computed tomography-computed tomography (SPECT/CT) and to evaluate the prognostic value of LMBR in peripheral artery disease (PAD) patients.

Materials and methods

This retrospective study consists of 38 patients with PAD (70 ± 12 years) and observed over 1 year who were included in the analysis. All participants underwent lower limb perfusion SPECT/CT. LMBR was calculated by dividing counts/volume in lower limb muscle by mean counts/volume of background. All patients were divided into two groups based on their LMBR value and observed for the occurrence of a major adverse event (MAE).

Results

The high and low LMBR groups consisted of 26 and 12 patients, respectively. The median LMBR in the high group was 9.59 (6.11–11.87) while that in the low group was 4.35 (3.85–4.99). A significantly higher number of patients in the low LMBR group experienced MAE than in the high LMBR group (7 of 12 vs. 1 of 26, p < 0.001).

Conclusion

This study demonstrated that the LMBR derived from lower limb perfusion SPECT/CT may have a high prognostic value in patients with PAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985;71:510–5.

    Article  CAS  PubMed  Google Scholar 

  2. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329–40.

    Article  PubMed  Google Scholar 

  3. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116:1509–26.

    Article  CAS  PubMed  Google Scholar 

  4. Aronow WS, Ahn C. Prevalence of coexistence of coronary artery disease, peripheral arterial disease, and atherothrombotic brain infarction in men and women ≥62 years of age. Am J Cardiol. 1994;74:64–5.

    Article  CAS  PubMed  Google Scholar 

  5. Smith GD, Shipley MJ, Rose G. Intermittent claudication, heart disease risk factors, and mortality. The Whitehall Study. Circulation. 1990;82:1925–31.

    Article  CAS  PubMed  Google Scholar 

  6. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326:381–6.

    Article  CAS  PubMed  Google Scholar 

  7. Murabito JM, Evans JC, Nieto K, Larson MG, Levy D, Wilson PW. Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study. Am Heart J. 2002;143:961–5.

    Article  PubMed  Google Scholar 

  8. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33:S1–75.

    Article  PubMed  Google Scholar 

  9. Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg. 2010;51:230–41.

    Article  PubMed  Google Scholar 

  10. Koelemay MJ, den Hartog D, Prins MH, Kromhout JG, Legemate DA, Jacobs MJ. Diagnosis of arterial disease of the lower extremities with duplex ultrasonography. Br J Surg. 1996;83:404–9.

    Article  CAS  PubMed  Google Scholar 

  11. Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301:415–24.

    Article  CAS  PubMed  Google Scholar 

  12. Napoli A, Anzidei M, Zaccagna F, Cavallo Marincola B, Zini C, Brachetti G, et al. Peripheral arterial occlusive disease: diagnostic performance and effect on therapeutic management of 64-section CT angiography. Radiology. 2011;261:976–86.

    Article  PubMed  Google Scholar 

  13. Nelemans PJ, Leiner T, de Vet HC, van Engelshoven JM. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology. 2000;217:105–14.

    Article  CAS  PubMed  Google Scholar 

  14. Thurnher S, Miller S, Schneider G, Ballarati C, Bongartz G, Herborn CU, et al. Diagnostic performance of gadobenate dimeglumine enhanced MR angiography of the iliofemoral and calf arteries: a large-scale multicenter trial. AJR Am J Roentgenol. 2007;189:1223–37.

    Article  PubMed  Google Scholar 

  15. Siegel ME, Stewart CA. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study. AJR Am J Roentgenol. 1981;136:1179–83.

    Article  CAS  PubMed  Google Scholar 

  16. Hamanaka D, Odori T, Maeda H, Ishii Y, Hayakawa K, Torizuka K, et al. A quantitative assessment of scintigraphy of the legs using 201Tl. Eur J Nucl Med. 1984;9:12–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kijima T, Kumita S, Cho K, Kumazaki T. 99mTc-tetrofosmin exercise leg perfusion scintigraphy in arteriosclerosis obliterans (ASO)—assessment of leg ischemia using two phase data acquisition. Kaku Igaku. 1998;35:305–13.

    CAS  PubMed  Google Scholar 

  18. Wolfram RM, Budinsky AC, Sinzinger H. Assessment of peripheral arterial vascular disease with radionuclide techniques. Semin Nucl Med. 2001;31:129–42.

    Article  CAS  PubMed  Google Scholar 

  19. Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, et al. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant. 2004;13:429–37.

    Article  PubMed  Google Scholar 

  20. Tara S, Miyamoto M, Takagi G, Fukushima Y, Kirinoki-Ichikawa S, Takano H, et al. Prediction of limb salvage after therapeutic angiogenesis by autologous bone marrow cell implantation in patients with critical limb ischemia. Ann Vasc Dis. 2011;4:24–31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stacy MR, da Yu Y, Maxfield MW, Jaba IM, Jozwik BP, Zhuang ZW, et al. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging. 2014;7:92–9.

    Article  PubMed  Google Scholar 

  22. Demirtas S, Karahan O, Yazici S, Guclu O, Caliskan A, Yavuz C, et al. The relationship between complete blood count parameters and Fontaine’s Stages in patients with peripheral arterial disease. Vascular. 2014;22:427–31.

    Article  PubMed  Google Scholar 

  23. Jaff MR, White CJ, Hiatt WR, Fowkes GR, Dormandy J, Razavi M, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the inter-society consensus for the management of peripheral arterial disease (TASC II): the TASC steering committee. Ann Vasc Dis. 2015;8(4):343–57.

    Article  PubMed  Google Scholar 

  24. Kuśmierek J, Dabrowski J, Bienkiewicz M, Szuminski R, Plachcinska A. Radionuclide assessment of lower limb perfusion using 99mTc-MIBI in early stages of atherosclerosis. Nucl Med Rev Cent East Eur. 2006;9:18–23.

    PubMed  Google Scholar 

  25. Doobay AV, Anand SS. Sensitivity and specificity of the ankle-brachial index to predict future cardiovascular outcomes: a systematic review. Arterioscler Thromb Vasc Biol. 2005;25:1463–9.

    Article  CAS  PubMed  Google Scholar 

  26. Diehm C, Lange S, Darius H, Pittrow D, von Stritzky B, Tepohl G, et al. Association of low ankle brachial index with high mortality in primary care. Eur Heart J. 2006;27:1743–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the radiology technologists Kyoji Asano, Toyohiko Yanagawa, Shinjiro Yoshida, and Toshio Maki for their technical assistance in the administration of lower limb perfusion SPECT/CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenobu Hashimoto.

Ethics declarations

Funding

None.

Ethical statement

The Ethics Committee at Nippon Medical School Hospital approved the study protocol (28-07-609). The study was performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

Takanori Ikeda has received Grant support through his institution from Daiichi Sankyo, Bristol-Myers Squibb, and Boehringer Ingelheim and honoraria for lectures from Bayer Healthcare, Daiichi Sankyo, Bristol-Myers Squibb, Pfizer, Tanabe-Mitsubishi, and Ono Pharmaceutical. Regarding this study, all authors declare that there is no potential conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, H., Fukushima, Y., Kumita, Si. et al. Prognostic value of lower limb perfusion single-photon emission computed tomography-computed tomography in patients with lower limb atherosclerotic peripheral artery disease. Jpn J Radiol 35, 68–77 (2017). https://doi.org/10.1007/s11604-016-0602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-016-0602-y

Keywords

Navigation