Skip to main content

Advertisement

Log in

Additive value of 320-section low-dose dynamic volume CT in relation to 3-T MRI for the preoperative evaluation of brain tumors

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess whether 320-section low-dose dynamic volume computed tomography (320-LDVCT) with adaptive iterative dose reduction (AIDR) adds value to 3-T MRI for the preoperative evaluation of brain tumors.

Methods

The study population was comprised of 16 consecutive patients with brain tumors who, in addition to preoperative 3-T MRI, underwent 320-LDVCT with AIDR. Two radiologists independently evaluated the CT and MRI studies; one measured the relative cerebral blood volume (rCBV) in the tumor and contralateral brain on CT and MR perfusion maps. Interobserver agreement was assessed by κ statistics.

Results

In 3 of 16 patients (19 %), 320-LDVCT added diagnostic value to 3-T MRI studies with respect to the visualization of feeders (κ = 0.77), and in 12 (75 %) it helped the delineation of venous structures (κ = 0.71) and the relationship between the tumor and adjacent vessels (κ = 0.85). The average standardized rCBV value was 12.2 ± 2.40 (range 0.7–36.6) on MR and 8.80 ± 2.77 (range 0.8–38.0) on CT perfusion studies; the correlation between these values was very strong (r = 0.92, p < 0.0001). According to the neurosurgeons, 320-LDVCT added helpful information for surgery in 4 patients (25 %).

Conclusion

The 320-LDVCT can add value to 3-T MRI for the tumor feeders and relationship between the tumor and adjacent vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIDR:

Adaptive iterative dose reduction

320-LDVCT:

320-Section low-dose dynamic volume CT

rCBV:

Relative cerebral blood volume

MRI:

Magnetic resonance imaging

References

  1. Essig M, Anzalone N, Combs SE, Dorfler A, Lee SK, Picozzi P, et al. MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. AJNR Am J Neuroradiol. 2012;33:803–17.

    Article  CAS  PubMed  Google Scholar 

  2. Uetani H, Akter M, Hirai T, Shigematsu Y, Kitajima M, Kai Y, et al. Can 3 T MR angiography replace DSA for the identification of arteries feeding intracranial meningiomas? AJNR Am J Neuroradiol. 2013;34:765–72.

    Article  CAS  PubMed  Google Scholar 

  3. Murayama K, Katada K, Nakane M, Toyama H, Anno H, Hayakawa M, et al. Whole-brain perfusion CT performed with a prototype 256-detector row CT system: initial experience. Radiology. 2009;250:202–11.

    Article  PubMed  Google Scholar 

  4. Hayakawa M, Maeda S, Sadato A, Tanaka T, Kaito T, Hattori N, et al. Detection of pulsation in ruptured and unruptured cerebral aneurysms by electrocardiographically gated 3-dimensional computed tomographic angiography with a 320-row area detector computed tomography and evaluation of its clinical usefulness. Neurosurgery. 2011;69:843–51 (discussion 51).

    Article  PubMed  Google Scholar 

  5. Willems PW, Brouwer PA, Barfett JJ, terBrugge KG, Krings T. Detection and classification of cranial dural arteriovenous fistulas using 4D-CT angiography: initial experience. AJNR Am J Neuroradiol. 2011;32:49–53.

    CAS  PubMed  Google Scholar 

  6. Kim DJ, Krings T. Whole-brain perfusion CT patterns of brain arteriovenous malformations: a pilot study in 18 patients. AJNR Am J Neuroradiol. 2011;32:2061–6.

    Article  CAS  PubMed  Google Scholar 

  7. Willems PW, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology. 2012;54:123–31.

    Article  PubMed  Google Scholar 

  8. Chen W, Xing W, Peng Y, He Z, Wang C, Wang Q. Cerebral aneurysms: accuracy of 320-detector row nonsubtracted and subtracted volumetric CT angiography for diagnosis. Radiology. 2013;269:841–9.

    Article  PubMed  Google Scholar 

  9. Kidoh M, Hirai T, Oda S, Utsunomiya D, Kawano T, Yano S, et al. Can CT angiography reconstructed from CT perfusion source data on a 320-section volume CT scanner replace conventional CT angiography for the evaluation of intracranial arteries? Jpn J Radiol. 2015;33:353–9.

    Article  PubMed  Google Scholar 

  10. Funama Y, Utsunomiya D, Taguchi K, Oda S, Shimonobo T, Yamashita Y. Automatic exposure control at single- and dual-heartbeat CTCA on a 320-MDCT volume scanner: effect of heart rate, exposure phase window setting, and reconstruction algorithm. Phys Med. 2014;30:385–90.

    Article  PubMed  Google Scholar 

  11. Nitta N, Ikeda M, Sonoda A, Nagatani Y, Ohta S, Takahashi M, et al. Images acquired using 320-MDCT with adaptive iterative dose reduction with wide-volume acquisition: visual evaluation of image quality by 10 radiologists using an abdominal phantom. AJR Am J Roentgenol. 2014;202:2–12.

    Article  PubMed  Google Scholar 

  12. Tabuchi S, Nakajima S. Usefulness of 320-row area detector computed tomography for the diagnosis of cystic falx meningioma. Case Rep Oncol. 2013;6:362–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen T, Guo D, Fang Z, Zhong W, Zhao J, Jiang Y. Preliminary study of whole-brain CT perfusion imaging in patients with intracranial tumours adjacent to large blood vessels. Clin Radiol. 2014;69:e25–32.

    Article  CAS  PubMed  Google Scholar 

  14. Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, et al. Contrast agents and cerebral hemodynamics. Magn Reson Med. 1991;19:285–92.

    Article  CAS  PubMed  Google Scholar 

  15. Mert A, Buehler K, Sutherland GR, Tomanek B, Widhalm G, Kasprian G, et al. Brain tumor surgery with 3-dimensional surface navigation. Neurosurgery. 2012;71:ons286–94 (discussion ons94-5).

    PubMed  Google Scholar 

  16. Nabavi DG, Cenic A, Craen RA, Gelb AW, Bennett JD, Kozak R, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology. 1999;213:141–9.

    Article  CAS  PubMed  Google Scholar 

  17. Eastwood JD, Provenzale JM. Cerebral blood flow, blood volume, and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology. 2003;45:373–6.

    Article  CAS  PubMed  Google Scholar 

  18. Ellika SK, Jain R, Patel SC, Scarpace L, Schultz LR, Rock JP, et al. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol. 2007;28:1981–7.

    Article  CAS  PubMed  Google Scholar 

  19. Nishimura S, Hirai T, Shigematsu Y, Kitajima M, Morioka M, Kai Y, et al. Evaluation of brain and head and neck tumors with 4D contrast-enhanced MR angiography at 3T. AJNR Am J Neuroradiol. 2012;33:445–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Kidoh.

Ethics declarations

Conflict of interest

E. H, T. H, H. N, M. K, M. A, Y. I, M. K, S. O, D. U, T. N, Y. Y: None.

Financial disclosure

E. H, T. H, H. N, M. K, M. A, Y. I, M. K, S. O, D. U, T. N, Y. Y: None.

We declare that all human and animal studies have been approved by the Kumamoto University ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashida, E., Hirai, T., Nakamura, H. et al. Additive value of 320-section low-dose dynamic volume CT in relation to 3-T MRI for the preoperative evaluation of brain tumors. Jpn J Radiol 34, 691–699 (2016). https://doi.org/10.1007/s11604-016-0576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-016-0576-9

Keywords

Navigation