Skip to main content

Advertisement

Log in

A synthetic tryptophan metabolite reduces hemorrhagic area and inflammation after pulmonary radiofrequency ablation in rabbit nonneoplastic lungs

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine the effect of a synthetic tryptophan metabolite, tranilast [N-(3,4-dimethoxycinnamoyl)-anthranilic acid], on inflammatory and hemorrhagic areas after pulmonary radiofrequency ablation (RFA) in rabbits.

Materials and methods

Percutaneous RFA using a 17-gauge LeVeen electrode was performed in normal rabbit lungs. The rabbits were divided into tranilast-treated (300 mg/kg/day, orally) and control groups (n = 24/group). The effects of tranilast were evaluated using multidetector-row computed tomography (CT), histology, and immunohistochemistry immediately after RFA on days 1, 7, 14, and 28.

Results

Oral administration of tranilast significantly reduced the size of ablated lesions assessed using CT and histology on days 7 and 14. Furthermore, it reduced the hemorrhagic areas on day 7 and inflammatory areas on day 14, but did not affect the areas of coagulation necrosis on days 1, 7, 14, and 28. Immunohistochemical analysis showed an increase in the ratio of CD163-positive macrophage areas to rabbit macrophage (RAM11)-positive pan-macrophage areas and a decrease in the number of nuclear factor-κB-positive nuclei and CD31-positive microvessels in the tranilast group on days 7 and/or 14.

Conclusions

The results suggest that tranilast modulates the repair process after pulmonary RFA through macrophage accumulation, suppression of inflammation, and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gazelle GS, Goldberg SN, Solbiati L, Livraghi T. Tumor ablation with radio-frequency energy. Radiology. 2000;217:633–46.

    Article  CAS  PubMed  Google Scholar 

  2. Simon CJ, Dupuy DE, DiPetrillo TA, Safran HP, Grieco CA, Ng T, et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology. 2007;243:268–75.

    Article  PubMed  Google Scholar 

  3. Kelekis AD, Thanos L, Mylona S, Ptohis N, Malagari K, Nikita A, et al. Percutaneous radiofrequency ablation of lung tumors with expandable needle electrodes: current status. Eur Radiol. 2006;16:2471–82.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf FJ, Grand DJ, Machan JT, Dipetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology. 2008;247:871–9.

    Article  PubMed  Google Scholar 

  5. Beland MD, Wasser EJ, Mayo-Smith WW, Dupuy DE. Primary non-small cell lung cancer: review of frequency, location, and time of recurrence after radiofrequency ablation. Radiology. 2010;254:301–7.

    PubMed  Google Scholar 

  6. Okuma T, Matsuoka T, Yamamoto A, Oyama Y, Hamamoto S, Toyoshima M, et al. Determinants of local progression after computed tomography-guided percutaneous radiofrequency ablation for unresectable lung tumors: 9-year experience in a single institution. Cardiovasc Interv Radiol. 2010;33:787–93.

    Article  Google Scholar 

  7. Hiraki T, Sakurai J, Tsuda T, Gobara H, Sano Y, Mukai T, et al. Risk factors for local progression after percutaneous radiofrequency ablation of lung tumors: evaluation based on a preliminary review of 342 tumors. Cancer. 2006;107:2873–80.

    Article  PubMed  Google Scholar 

  8. Giraud P, Antoine M, Larrouy A, Milleron B, Callard P, De Rycke Y, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys. 2000;48:1015–24.

    Article  CAS  PubMed  Google Scholar 

  9. Abtin FG, Eradat J, Gutierrez AJ, Lee C, Fishbein MC, Suh RD. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiographics. 2012;32:947–69.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Okuma T, Matsuoka T, Okamura T, Wada Y, Yamamoto A, Oyama Y, et al. 18F-FDG small-animal PET for monitoring the therapeutic effect of CT-guided radiofrequency ablation on implanted VX2 lung tumors in rabbits. J Nucl Med. 2006;47:1351–8.

    PubMed  Google Scholar 

  11. Azuma H, Banno K, Yoshimura T. Pharmacological properties of N-(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′), a new anti-atopic agent. Br J Pharmacol. 1976;58:483–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Koda A, Nagai H, Watanabe S, Yanagihara Y, Sakamoto K. Inhibition of hypersensitivity reactions by a new drug, N(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′). J Allergy Clin Immunol. 1976;57:396–407.

    Article  CAS  PubMed  Google Scholar 

  13. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science. 2005;310:850–5.

    Article  CAS  PubMed  Google Scholar 

  14. Chikaraishi A, Hirahashi J, Takase O, Marumo T, Hishikawa K, Hayashi M, et al. Tranilast inhibits interleukin-1beta-induced monocyte chemoattractant protein-1 expression in rat mesangial cells. Eur J Pharmacol. 2001;427:151–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu T, Kimura T, Funahashi T, Watanabe K, Ho IK, Yamamoto I. Displacement of opioid receptor binding ligands from the rat brain by N3-(2′,5′-dimethoxyphenacyl) arabinofuranosyluracil. Res Commun Mol Pathol Pharmacol. 2005;117–118:105–13.

    PubMed  Google Scholar 

  16. Sata M, Takahashi A, Tanaka K, Washida M, Ishizaka N, Ako J, et al. Mouse genetic evidence that tranilast reduces smooth muscle cell hyperplasia via a p21(WAF1)-dependent pathway. Arterioscler Thromb Vasc Biol. 2002;22:1305–9.

    Article  CAS  PubMed  Google Scholar 

  17. Isaji M, Nakajoh M, Naito J. Selective inhibition of collagen accumulation by N-(3,4-dimethoxycinnamoyl)anthranilic acid (N-5′) in granulation tissue. Biochem Pharmacol. 1987;36:469–74.

    Article  CAS  PubMed  Google Scholar 

  18. Isaji M, Miyata H, Ajisawa Y, Takehana Y, Yoshimura N. Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. Br J Pharmacol. 1997;122:1061–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Matsumura T, Kugiyama K, Sugiyama S, Ota Y Y, Doi H, Ogata N, et al. Suppression of atherosclerotic development in Watanabe heritable hyperlipidemic rabbits treated with an oral antiallergic drug, tranilast. Circulation. 1999;99:919–24.

    Article  CAS  PubMed  Google Scholar 

  20. Fukuyama J, Ichikawa K, Miyazawa K, Hamano S, Shibata N, Ujiie A. Tranilast suppresses intimal hyperplasia in the balloon injury model and cuff treatment model in rabbits. Jpn J Pharmacol. 1996;70:321–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kuroki M, Nakada H, Yamashita A, Sawaguchi A, Uchino N, Sato S, et al. Loss of cellular viability in areas of ground-glass opacity on computed tomography images immediately after pulmonary radiofrequency ablation in rabbits. Jpn J Radiol. 2012;30:323–30.

    Article  PubMed  Google Scholar 

  22. Tominaga J, Miyachi H, Takase K, Matsuhashi T, Yamada T, Sato A, et al. Time-related changes in computed tomographic appearance and pathologic findings after radiofrequency ablation of the rabbit lung: preliminary experimental study. J Vasc Interv Radiol. 2005;16:1719–26.

    Article  PubMed  Google Scholar 

  23. Yamamoto A, Nakamura K, Matsuoka T, Toyoshima M, Okuma T, Oyama Y, et al. Radiofrequency ablation in a porcine lung model: correlation between CT and histopathologic findings. AJR Am J Roentgenol. 2005;185:1299–306.

    Article  PubMed  Google Scholar 

  24. Komohara Y, Hirahara J, Horikawa T, Kawamura K, Kiyota E, Sakashita N, et al. AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype. J Histochem Cytochem. 2006;54:763–71.

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita A, Matsuda S, Matsumoto T, Moriguchi-Goto S, Takahashi M, Sugita C, et al. Thrombin generation by intimal tissue factor contributes to thrombus formation on macrophage-rich neointima but not normal intima of hyperlipidemic rabbits. Atherosclerosis. 2009;206:418–26.

    Article  CAS  PubMed  Google Scholar 

  26. Higaki F, Okumura Y, Sato S, Hiraki T, Gobara H, Mimura H, et al. Preliminary retrospective investigation of FDG-PET/CT timing in follow-up of ablated lung tumor. Ann Nucl Med. 2008;22:157–63.

    Article  PubMed  Google Scholar 

  27. Lee JM, Jin GY, Goldberg SN, Lee YC, Chung GH, Han YM, et al. Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and metastases: preliminary report. Radiology. 2004;230:125–34.

    Article  PubMed  Google Scholar 

  28. Komatsu H, Kojima M, Tsutsumi N, Hamano S, Kusama H, Ujiie A, et al. Mechanism of inhibitory action of tranilast on the release of slow reacting substance of anaphylaxis (SRS-A) in vitro: effect of tranilast on the release of arachidonic acid and its metabolites. Jpn J Pharmacol. 1988;46:53–60.

    Article  CAS  PubMed  Google Scholar 

  29. Komatsu H, Kojima M, Tsutsumi N, Hamano S, Kusama H, Ujiie A, et al. Study of the mechanism of inhibitory action of tranilast on chemical mediator release. Jpn J Pharmacol. 1988;46:43–51.

    Article  CAS  PubMed  Google Scholar 

  30. Martin-Ventura JL, Madrigal-Matute J, Martinez-Pinna R, Ramos-Mozo P, Blanco-Colio LM, Moreno JA, et al. Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: detoxifying mechanisms and potential therapeutic options. Thromb Haemost. 2012;108:435–42.

    Article  CAS  PubMed  Google Scholar 

  31. Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33:1135–44.

    Article  CAS  PubMed  Google Scholar 

  32. Oyama Y, Nakamura K, Matsuoka T, Toyoshima M, Yamamoto A, Okuma T, et al. Radiofrequency ablated lesion in the normal porcine lung: long-term follow-up with MRI and pathology. Cardiovasc Interv Radiol. 2005;28:346–53.

    Article  Google Scholar 

  33. Wright JG, Christman JW. The role of nuclear factor kappa B in the pathogenesis of pulmonary diseases: implications for therapy. Am J Respir Med. 2003;2:211–9.

    Article  CAS  PubMed  Google Scholar 

  34. Spiecker M, Lorenz I, Marx N, Darius H. Tranilast inhibits cytokine-induced nuclear factor kappaB activation in vascular endothelial cells. Mol Pharmacol. 2002;62:856–63.

    Article  CAS  PubMed  Google Scholar 

  35. Kosuga K, Tamai H, Ueda K, Hsu YS, Ono S, Tanaka S, et al. Effectiveness of tranilast on restenosis after directional coronary atherectomy. Am Heart J. 1997;134:712–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC. PLoS One. 2011;6:e21874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Carus A, Ladekarl M, Hager H, Pilegaard H, Nielsen PS, Donskov F. Tumor-associated neutrophils and macrophages in non-small cell lung cancer: no immediate impact on patient outcome. Lung Cancer. 2013;81:130–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grants-in-Aid for Scientific Research in Japan (Nos. 19790885 H.N., 23790410, 25460440 A.Y., 23390084 Y.A.). We are most grateful to Ms. Kyoko Ohashi, Ms. Ritsuko Sotomura, Ms. Yukiko Motoura, Ms. Tomoko Kawanami, Ms. Takako Sakamoto and Mr. Minoru Shiraishi for their technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nakada.

About this article

Cite this article

Nakada, H., Yamashita, A., Kuroki, M. et al. A synthetic tryptophan metabolite reduces hemorrhagic area and inflammation after pulmonary radiofrequency ablation in rabbit nonneoplastic lungs. Jpn J Radiol 32, 145–154 (2014). https://doi.org/10.1007/s11604-014-0282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-014-0282-4

Keywords

Navigation