Skip to main content

Advertisement

Log in

Negatively charged superparamagnetic iron oxide nanoparticles: a new blood-pooling magnetic resonance contrast agent

  • Original article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Our purpose was to investigate the utility of superparamagnetic iron-oxide nanoparticles (SPIO) as a blood-pooling contrast agent at magnetic resonance imaging (MRI).

Materials and methods

We studied four contrast agents: carboxymethyl-diethylaminoethyl dextran magnetite SPIO (CMEADM-S, diameter 54 nm), negatively charged CMEADM ultrasmall SPIO (CMEADM-U, 32 nm), alkali-treated dextran magnetite SPIO (ATDM-S, 55 nm), and ATDM ultrasmall SPIO (ATDM-U, 28 nm) carrying a neutral charge. Each contrast agent (80 μmol/kg) was injected intraperitoneally into apolipoprotein E (apoE) mice and the tissue iron concentration was measured 30-, 60-, 180-, and 300-min later by nuclear MR. For MR angiographic (MRA) evaluation, we injected the agents into the auricular vein of four groups of 15 rabbits. Immediately and 30-, 60-, 180-, and 300-min later, three rabbits from each group were subjected to MRI. The organ/background signal ratio (SR) was calculated. Statistical analyses were performed with Tukey’s honestly significant difference (HSD) test.

Results

At 60 and 180 min, blood-iron concentration of CMEADM-U was significantly different from other contrast agents. In the abdominal aorta and inferior vena cava, SR of CMEADM-U was higher at 180 and 300 min than of the other contrast agents. In the thoracic aorta, there was no difference in SR at 300 min between CMEADM-U and CMEADM-S.

Conclusion

Negatively charged SPIO nanoparticles may be useful as a blood-pooling contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319–31.

    Article  PubMed  CAS  Google Scholar 

  2. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol. 2004;39(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  3. Arbab AS, Liu W, Frank JA. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices. 2006;3(4):427–39.

    Article  PubMed  CAS  Google Scholar 

  4. Corot C, Port M, Guibert I, Robert P, Raynal I, Robic C, Raynaud JS, Prigent P, Dencausse A, Idee JM. Superparamagnetic contrast agents. In: Modo MMJ, Bulte JWM, editors. Molecular and cellular MR imaging. 1st ed. London: CRC Press; 2007. p. 59–84.

    Google Scholar 

  5. Saito K, Shindo H, Ozuki T, Ishikawa A, Kotake F, Shimazaki Y, et al. Detection of hepatocellular carcinoma with ferucarbotran (resovist)-enhanced breath-hold MR imaging: feasibility of 10 minute-delayed images. Magn Reson Med Sci. 2008;7(3):123–30.

    Article  PubMed  Google Scholar 

  6. Yoo HJ, Lee JM, Lee JY, Kim SH, Kim SJ, Han JK, et al. Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver. Invest Radiol. 2009;44(12):800–7.

    Article  PubMed  Google Scholar 

  7. Park HS, Lee JM, Kim SH, Chang S, Kim SJ, Han JK, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging. 2009;29(2):328–35.

    Article  PubMed  Google Scholar 

  8. Saokar A, Gee MS, Islam T, Mueller PR, Harisinghani MG. Appearance of primary lymphoid malignancies on lymphotropic nanoparticle-enhanced magnetic resonance imaging using ferumoxtran-10. Clin Imaging. 2010;34(6):448–52.

    Article  PubMed  Google Scholar 

  9. Hekimoglu K, Ustundag Y, Dusak A, Kalaycioglu B, Besir H, Engin H, et al. Small colorectal liver metastases: detection with SPIO-enhanced MRI in comparison with gadobenate dimeglumine-enhanced MRI and CT imaging. Eur J Radiol. 2011;77(3):468–72.

    Article  PubMed  Google Scholar 

  10. Ishigami K, Tajima T, Fujita N, Nishie A, Asayama Y, Kakihara D, et al. Hepatocellular carcinoma with marginal superparamagnetic iron oxide uptake on T2*-weighted magnetic resonance imaging: histopathologic correlation. Eur J Radiol. 2011;80(3):e293–8.

    Article  PubMed  Google Scholar 

  11. Harnan SE, Cooper KL, Meng Y, Ward SE, Fitzgerald P, Papaioannou D, et al. Magnetic resonance for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37(11):928–36.

    Article  PubMed  CAS  Google Scholar 

  12. Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology. 2002;223(2):432–8.

    Article  PubMed  Google Scholar 

  13. Wacker FK, Wendt M, Ebert W, Hillenbrandt C, Wolf KJ, Lewin JS. Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility of ultrasmall superparamagnetic iron oxide particles. Acad Radiol. 2002;9(11):1251–4.

    Article  PubMed  Google Scholar 

  14. Du J, Thornton FJ, Mistretta CA, Grist TM. Dynamic MR venography: an intrinsic benefit of time-resolved MR angiography. J Magn Reson Imaging. 2006;24(4):922–7.

    Article  PubMed  Google Scholar 

  15. Simon GH, von Vopelius-Feldt J, Fu Y, Schlegel J, Pinotek G, Wendland MF, et al. Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Invest Radiol. 2006;41(1):45–51.

    Article  PubMed  Google Scholar 

  16. Kawaguchi T, Hanaichi T, Hasegawa M, Maruno S. Dextran-magnetite complex: conformation of dextran chains and stability of solution. J Mater Sci Mater Med. 2001;12(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  17. Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, et al. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase 1 study. Radiology. 2004;231(2):474–81.

    Article  PubMed  Google Scholar 

  18. Amemiya S, Akahane M, Aoki S, Abe O, Kamada K, Saito N, et al. Dynamic contrast-enhanced perfusion MR imaging with SPIO: a pilot study. Invest Radiol. 2009;44(9):503–8.

    Article  PubMed  CAS  Google Scholar 

  19. Tsuchiya K, Nitta N, Sonoda A, Nitta-Seko A, Ohta S, Otani H, et al. Histological study of the biodynamics of iron oxide nanoparticles with different diameters. Int J Nanomed. 2011;6:1587–94.

    Article  CAS  Google Scholar 

  20. Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE−/− mice by USPIO-enhanced magnetic resonance imaging. Invest Radiol. 2010;45(11):702–7.

    Article  PubMed  Google Scholar 

  21. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Nitta.

About this article

Cite this article

Nitta, N., Tsuchiya, K., Sonoda, A. et al. Negatively charged superparamagnetic iron oxide nanoparticles: a new blood-pooling magnetic resonance contrast agent. Jpn J Radiol 30, 832–839 (2012). https://doi.org/10.1007/s11604-012-0133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-012-0133-0

Keywords

Navigation