Skip to main content
Log in

Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the usefulness of quantitative and visual assessment of diffusion-weighted imaging (DWI) of breast tumors to distinguish malignant from benign tumors.

Materials and methods

The DWI findings of 106 breast lesions (15 benign, 91 malignant) were retrospectively analyzed. The mean apparent diffusion coefficient (ADC) value for each lesion was calculated using b values of 250, 500, 750, and 1000 s/mm2 as a quantitative assessment. We visually evaluated the signal intensity of each breast lesion on the basis of a spinal signal intensity in DWI (b = 1000 s/mm2) and compared the mean ADC values using a threshold mean ADC +1.65 × standard deviation (SD) for malignant and benign breast lesions. Obviously strong signal intensity of the lesion relative to that of the spinal cord on DWI signifies malignancy.

Results

The mean ADC value for benign lesions (1.50 ± 0.38 × 10−3 mm2/s) was significantly higher than that for malignant lesions (0.98 ± 0.19 × 10−3 mm2/s), with 94.5% sensitivity, 80% specificity, and 92.5% accuracy. Sensitivity for visual assessment was 91.5%, specificity was 33.3%, and total accuracy was 82.5%.

Conclusion

ADC values, but not visual assessment, may be useful for differentiating benign and malignant breast tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Khouli RH, Macura KJ, Jacobs MA, Khalil TH, Kamel IR, Dwyer A, et al. Dynamic contrast-enhanced MRI of the breast: quantitative method for kinetic curve type assessment. AJR Am J Roentgenol 2009;193:W295–W300.

    Article  PubMed  Google Scholar 

  2. Moon M, Cornfeld D, Weinreb J. Dynamic contrast-enhanced breast MR imaging. Magn Reson Imaging Clin N Am 2009;17:351–362.

    Article  PubMed  Google Scholar 

  3. Jansen SA, Shimauchi A, Zak L, Fan X, Wood AM, Karczmar GS, et al. Kinetic curves of malignant lesions are not consistent across MRI systems: need for improved standardization of breast dynamic contrast-enhanced MRI acquisition. AJR Am J Roentgenol 2009;193:832–839.

    Article  PubMed  Google Scholar 

  4. Okafuji T, Yabuuchi H, Sasaki S, Soeda H, Matsuo Y, Inoue T, et al. MR imaging features of pure mucinous carcinoma of the breast. Eur J Radiol 2006;60:405–413.

    Article  PubMed  Google Scholar 

  5. Chen JH, Liu H, Baek HM, Nalcioglu O, Su MY. Magnetic resonance imaging features of fibrocystic change of the breast. J Magn Reson Imaging 2008;26:1207–1214.

    Article  Google Scholar 

  6. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173: 393–398.

    PubMed  CAS  Google Scholar 

  7. Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M. Focal liver masses: characterization with diffusion-weighted echo planar MR imaging. Radiology 1997;204:739–744.

    PubMed  CAS  Google Scholar 

  8. Balci NC, Perman WH, Saglam S, Akisik F, Fattahi R, Bilgin M. Diffusion-weighted magnetic resonance imaging of the pancreas. Top Magn Reson Imaging 2009;20:43–47.

    Article  PubMed  Google Scholar 

  9. Moteki T, Ishizaka H, Horikoshi H, Matsumoto M. Differentiation between hemangiomas and hepatocellular carcinomas with the apparent diffusion coefficient calculated from turbo FLASH MR images. J Magn Reson Imaging 1995;5: 187–191.

    Article  PubMed  CAS  Google Scholar 

  10. Moteki T. Ishizaka H. Diffusion-weighted EPI of cystic ovarian lesions: evaluation of cystic contents using apparent diffusion coefficients. J Magn Reson Imaging 2000:12: 1014–1019.

    Article  PubMed  CAS  Google Scholar 

  11. Sandrasegaran K, Sundaram CP, Ramaswamy R, Akisik FM, Rydberg MP, Lin C, et al. Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol 2010;194:438–445.

    Article  PubMed  Google Scholar 

  12. Razek AA, Elmorsy A, Elshafey M, Elhadedy T, Hamza O. Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI. J Magn Reson Imaging 2009;30:535–540.

    Article  PubMed  Google Scholar 

  13. Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, et al. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005;4:35–42.

    Article  PubMed  Google Scholar 

  14. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22:275–282.

    PubMed  Google Scholar 

  15. Nakayama T, Yoshimitsu K, Irie H, Aibe H, Tajima T, Nishie A, et al. Diffusion-weighted echoplanar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: usefulness of detecting keratinoid substances in mature cystic teratomas. J Magn Reson Imaging 2005;22: 271–278.

    Article  PubMed  Google Scholar 

  16. Ichikawa T, Erturk SM, Motosugi U, Sou H, Iino H, Araki T, et al. High-B-value diffusion weighted MRI in colorectal cancer. AJR Am J Roentgenol 2006;187:181–184.

    Article  PubMed  Google Scholar 

  17. Yoshikawa T, Kawamitsu H, Mitchell DG, Ohno Y, Ku Y, Seo Y, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006;187:1521–1530.

    Article  PubMed  Google Scholar 

  18. Fujii S, Matsusue E, Kanasaki Y, Kanamori Y, Nakanishi J, Sugihara S, et al. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 2008;18:18–23.

    Article  PubMed  Google Scholar 

  19. Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, et al. Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 2008;7: 23–29.

    Article  PubMed  Google Scholar 

  20. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002;16:172–178.

    Article  PubMed  Google Scholar 

  21. Kuroki Y, Nasu K, Kuroki S, Murakami K, Hayashi T, Sekiguchi R, et al. Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 2004;3: 79–85.

    Article  PubMed  Google Scholar 

  22. Yoshikawa MI, Ohsumi S, Sugata S, Kataoka M, Takashima S, Kikuchi K, et al. Comparison of breast cancer detection by diffusion-weighted magnetic resonance imaging and mammography. Radiat Med 2007;25:218–223.

    Article  PubMed  Google Scholar 

  23. Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 2007;6:21–27.

    Article  PubMed  Google Scholar 

  24. Baltzer PA, Benndorf M, Dietzel M, Gajada M, Camara O, Kaiser WA. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 2010;20:1101–1110.

    Article  PubMed  Google Scholar 

  25. Yoshikawa T, Hayashi N, Yamamoto S, Tajiri Y, Yoshioka N, Masumoto T, et al. Brachial plexus injury: clinical manifestations, conventional imaging findings, and the latest imaging techniques. Radiographics 2006;26:S133–S143.

    Article  PubMed  Google Scholar 

  26. Fujii S, Kakite S, Nishihara K, Kanasaki Y, Harada T, Kigawa J, et al. Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions. J Magn Reson Imaging 2008;28:1149–1156.

    Article  PubMed  Google Scholar 

  27. Burdette JH, Ricci PE, Petitti N, Elster AD. Cerebral infarction: time course of signal changes on diffusion-weighted MR imaging. AJR Am J Roentgenol 1998;171:791–795.

    PubMed  CAS  Google Scholar 

  28. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173: 393–398.

    PubMed  CAS  Google Scholar 

  29. Noguchi K, Watanabe N, Nagayoshi T, Kanazawa T, Toyoshima S, Shimizu M, et al. Role of diffusion weighted echoplanar MRI in distinguishing between brain abscess and tumor: a preliminary report. Neuroradiology 1999;41:171–174.

    Article  PubMed  CAS  Google Scholar 

  30. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. Usefulness of diffusion weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9:53–60.

    Article  PubMed  CAS  Google Scholar 

  31. Buadu LD, Murakami J, Murayama S, Hashiguchi N, Sakai S, Masuda K, et al. Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic finding and tumor angiogenesis. Radiology 1996;200: 639–649.

    PubMed  CAS  Google Scholar 

  32. Tamimi SO, Ahmed A. Stromal changes in invasive breast carcinoma: ultrastructural study. J Pathol 1987;153:163–170.

    Article  PubMed  CAS  Google Scholar 

  33. Togao O, Doi S, Kuro-o M, Masaki T, Yorioka N, Takahashi M. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 2010;255:722–780.

    Article  Google Scholar 

  34. Yabuuchi H, Matsuo Y, Okafuji T, Kamitani T, Soeda H, Setoguchi T, et al. Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging 2008;28:1157–1165.

    Article  PubMed  Google Scholar 

  35. Fukunari F, Okamura K, Zeze R, Kagawa T, Hashimoto K, Tuasa K. Cervical lymph nodes with or without metastases from oral squamous carcinoma: a correlation of MRI findings and histopathologic architecture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:890–899.

    Article  PubMed  Google Scholar 

  36. Namimoto T, Yamashita Y, Awai K, Nakaura T, Yanaga Y, Hirai T, et al. Combined use of T2-weighted and diffusion-weighted 3-T MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 2009;19:2756–2764.

    Article  PubMed  Google Scholar 

  37. Uto T, Takehara Y, Nakamura Y, Naito T, Hashimoto D, Inui D, et al. Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology 2009;252:247–254.

    Article  PubMed  Google Scholar 

  38. Wenkel E, Geppert C, Schulz-Wendtland R, Uder M, Kiefer B, Bautz W, et al. Diffusion-weighted imaging in breast MRI: comparison of two different pulse sequences. Acad Radiol 2007;14:1077–1083.

    Article  PubMed  Google Scholar 

  39. Yuen S, Uematsu T, Kasami M, Tanaka K, Kimura K, Sanuki J, et al. Breast carcinomas with strong high-signal intensity on T2-weighted MR images: pathological characteristics and differential diagnosis. J Magn Reson Imaging 2007;25:502–510.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiji Inoue.

About this article

Cite this article

Inoue, K., Kozawa, E., Mizukoshi, W. et al. Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Jpn J Radiol 29, 429–436 (2011). https://doi.org/10.1007/s11604-011-0575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-011-0575-9

Key words

Navigation