Radiation Medicine

, Volume 25, Issue 3, pp 94–105 | Cite as

Evaluation of tumor blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy—work in progress

  • Makoto KajiharaEmail author
  • Yoshifumi Sugawara
  • Kenshi Sakayama
  • Keiichi Kikuchi
  • Teruhito Mochizuki
  • Kenya Murase



The objective of this study was to calculate tumor blood flow (TBF) in musculoskeletal lesions and to evaluate the usefulness of this parameter in differentiating malignant from benign lesions and monitoring the treatment response to preoperative chemotherapy.

Materials and methods

Altogether, 33 patients with musculoskeletal lesions underwent a total of 50 dynamic magnetic resonance imaging (MRI) examinations, including 28 on 9 patients undergoing preoperative chemotherapy. TBF was calculated using deconvolution analysis. Steepest slope (SS) was determined from the time–intensity curve during the first pass of contrast medium.


TBF ranged from 2.7 to 178.6 mL/100 mL/min in benign lesions and from 15.4 to 296.3 mL/100 mL/min in malignant lesions. SS ranged from 0.5%/s to 31.8%/s for benign lesions and from 3.1%/s to 64.8%/sec for malignant lesions. TBF and SS did not differ significantly between benign and malignant lesions. Among the nine patients who underwent preoperative chemotherapy, TBF after chemotherapy was lower in good responders (11.7, 11.0, 7.9 mL/100 mL/min) (n = 3, tumor necrosis ≥90%) than in poor responders (23.4–141.5 mL/100 mL/min) (n = 6, tumor necrosis <90%).


TBF and SS cannot reliably differentiate malignant from benign lesions. However, they have potential utility in evaluating the preoperative treatment response in patients with malignant musculoskeletal tumors.

Key words

Tumor blood flow Musculoskeletal tumor Dynamic contrast-enhanced MR imaging Preoperative chemotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kransdorf, MJ, Murphey, MD 2000Radiologic evaluation of soft-tissue masses: a current perspectiveAJR Am J Roentgenol17557587PubMedGoogle Scholar
  2. 2.
    May, DA, Good, RB, Smith, DK, Parsons, TW 1997MR imaging of musculoskeletal tumors and tumor mimickers with intravenous gadolinium: experience with 242 patientsSkeletal Radiol26215PubMedCrossRefGoogle Scholar
  3. 3.
    Erlemann, R, Reiser, MF, Peters, PE,  et al. 1989Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imagingRadiology17176773PubMedGoogle Scholar
  4. 4.
    Van der Woude, HJ, Bloem, JL, Hogendoorn, PC 1998Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing's sarcoma: review of current imaging modalitiesSkeletal Radiol275771PubMedCrossRefGoogle Scholar
  5. 5.
    Verstraete, KL, Dierick, A, De Deene, Y, Uyttendaele, D, Vandamme, F, Roels, H,  et al. 1994First-pass images of musculoskeletal lesions: a new and useful diagnostic application of dynamic contrast-enhanced MRIMagn Reson Imaging12687702PubMedCrossRefGoogle Scholar
  6. 6.
    Erlemann, R, Sciuk, J, Bosse, A,  et al. 1990Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphyRadiology1757916PubMedGoogle Scholar
  7. 7.
    Verstraete, KL, De Deene, Y, Roels, H, Dierick, A, Uyttendaele, D, Kunnen, M 1994Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging—parametric “first-pass” images depict tissue vascularization and perfusionRadiology19283543PubMedGoogle Scholar
  8. 8.
    Pan, G, Raymond, AK, Carrasco, CH, Wallace, S, Kim, EE, Shirkhoda, A,  et al. 1990Osteosarcoma: MR imaging after preoperative chemotherapyRadiology17451726PubMedGoogle Scholar
  9. 9.
    Raymond, AK, Chawla, SP, Carrasco, CH, Ayala, AG, Fanning, CV, Grice, B,  et al. 1987Osteosarcoma chemotherapy effect: a prognostic factorSemin Diagn Pathol421236PubMedGoogle Scholar
  10. 10.
    Rosen, G, Caparros, B, Huvos, AG, Kosloff, C, Nirenberg, A, Cacavio, A,  et al. 1982Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapyCancer49122130PubMedCrossRefGoogle Scholar
  11. 11.
    Picci, P, Bacci, G, Campanacci, M, Gasparini, M, Pilotti, S, Cerasoli, S,  et al. 1985Histologic evaluation of necrosis in osteosarcoma induced by chemotherapy: regional mapping of viable and nonviable tumorCancer56151521PubMedCrossRefGoogle Scholar
  12. 12.
    Van der Woude, HJ, Bloem, JL, Verstraete, KL, Taminiau, AH, Nooy, MA, Hogendoorn, PC 1995Osteosarcoma and Ewing's sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgeryAJR Am J Roentgenol1655938PubMedGoogle Scholar
  13. 13.
    Ongolo-Zogo, P, Thiesse, P, Sau, J, Desuzinges, C, Blay, JY, Bonmartin, A,  et al. 1999Assessment of osteosarcoma response to neoadjuvant chemotherapy: comparative usefulness of dynamic gadolinium-enhanced spin-echo magnetic resonance imaging and technetium-99m skeletal angioscintigraphyEur Radiol990714PubMedCrossRefGoogle Scholar
  14. 14.
    Dyke, JP, Panicek, DM, Healey, JH, Meyers, PA, Huvos, AG, Schwartz, LH,  et al. 2003Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imagingRadiology2282718PubMedCrossRefGoogle Scholar
  15. 15.
    Van Rijswijk, CS, Geirnaerdt, MJ, Hogendoorn, PC, Peterse, JL, van Coevorden, F, Taminiau, AH,  et al. 2003Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial resultsEur Radiol13184958PubMedCrossRefGoogle Scholar
  16. 16.
    Fritz-Hansen, T, Rostrup, E, Larsson, HB, Sondergaard, L, Ring, P, Henriksen, O 1996Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imagingMagn Reson Med3622531PubMedCrossRefGoogle Scholar
  17. 17.
    Pahernik, S, Griebel, J, Botzlar, A, Gneiting, T, Brandl, M, Dellian, M,  et al. 2001Quantitative imaging of tumour blood flow by contrast-enhanced magnetic resonance imagingBr J Cancer85165563PubMedCrossRefGoogle Scholar
  18. 18.
    Sugawara, Y, Murase, K, Kikuchi, K, Sakayama, K, Miyazaki, T, Kajihara, M,  et al. 2006Measurement of tumor blood flow using dynamic contrast-enhanced magnetic resonance imaging and deconvolution analysis: a preliminary study in musculoskeletal tumorsJ Comput Assist Tomogr3098390PubMedCrossRefGoogle Scholar
  19. 19.
    Murase, K, Kikuchi, K, Miki, H, Shimizu, T, Ikezoe, J 2001Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imagingJ Magn Reson Imaging13797806PubMedCrossRefGoogle Scholar
  20. 20.
    Meier, P, Zierler, KL 1954On the theory of the indicator-dilution method for measurement of blood flow and volumeJ Appl Physiol673144PubMedGoogle Scholar
  21. 21.
    Ostergaard, L, Weisskoff, RM, Chesler, DA, Gyldensted, C, Rosen, BR 1996High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysisMagn Reson Med3671525PubMedCrossRefGoogle Scholar
  22. 22.
    Huvos, AG, Rosen, G, Marcove, RC 1977Primary osteogenic sarcoma: pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacementArch Pathol Lab Med101148PubMedGoogle Scholar
  23. 23.
    Crim, JR, Seeger, LL, Yao, L, Chandnani, V, Eckardt, JJ 1992Diagnosis of soft-tissue masses with MR imaging: can benign masses be differentiated from malignant ones?Radiology1855816PubMedGoogle Scholar
  24. 24.
    Van der Woude, HJ, Verstraete, KL, Hogendoorn, PC, Taminiau, AH, Hermans, J, Bloem, JL 1998Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization?Radiology2088218PubMedGoogle Scholar
  25. 25.
    Van Rijswijk, CS, Geirnaerdt, MJ, Hogendoorn, PC, Taminiau, AH, van Coevorden, F, Zwinderman, AH,  et al. 2004Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancyRadiology233493502PubMedCrossRefGoogle Scholar
  26. 26.
    Buadu, LD, Murakami, J, Murayama, S, Hashiguchi, N, Sakai, S, Toyoshima, S,  et al. 1996Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesisRadiology20063949PubMedGoogle Scholar
  27. 27.
    Teifke, A, Behr, O, Schmidt, M, Victor, A, Vomweg, TW, Thelen, M,  et al. 2006Dynamic MR imaging of breast lesions: correlation with microvessel distribution pattern and histologic characteristics of prognosisRadiology23935160PubMedCrossRefGoogle Scholar
  28. 28.
    Seeger, LL, Widoff, BE, Bassett, LW, Rosen, G, Eckardt, JJ 1991Preoperative evaluation of osteosarcoma: value of gadopentetate dimeglumine-enhanced MR imagingAJR Am J Roentgenol15734751PubMedGoogle Scholar
  29. 29.
    Fletcher, BD, Hanna, SL, Fairclough, DL, Gronemeyer, SA 1992Pediatric musculoskeletal tumors: use of dynamic, contrast-enhanced MR imaging to monitor response to chemotherapyRadiology1842438PubMedGoogle Scholar
  30. 30.
    De Baere, T, Vanel, D, Shapeero, LG, Charpentier, A, Terrier, P, di Paola, M 1992Osteosarcoma after chemotherapy: evaluation with contrast material-enhanced subtraction MR imagingRadiology18558792PubMedGoogle Scholar
  31. 31.
    Worawattanakul, S, Semelka, RC, Kelekis, NL, Woosley, JT 1997Angiosarcoma of the liver: MR imaging pre- and post-chemotherapyMagn Reson Imaging156137PubMedCrossRefGoogle Scholar

Copyright information

© Japan Radiological Society 2007

Authors and Affiliations

  • Makoto Kajihara
    • 1
    Email author
  • Yoshifumi Sugawara
    • 1
  • Kenshi Sakayama
    • 2
  • Keiichi Kikuchi
    • 1
  • Teruhito Mochizuki
    • 1
  • Kenya Murase
    • 3
  1. 1.Department of RadiologyEhime University School of MedicineToonJapan
  2. 2.Department of Orthopedic SurgeryEhime University School of MedicineToonJapan
  3. 3.Department of Medical Engineering, Division of Allied Health ScienceOsaka University Medical SchoolSuitaJapan

Personalised recommendations