Skip to main content

Advertisement

Log in

A geospatial analysis of long-term trends in snow depth in the Hindu Kush Himalayan region: 1999–2019

  • Short Communication - Atmospheric & Space Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Hindu Kush Himalaya (HKH) region is a major source of natural resources, like fresh water, for communities throughout south Asia. Monitoring the spatial patterns of climate variables throughout the region can help better understand and predict the future of this critical resource. In situ daily snow depth measurements from 1999 to 2019 were utilized to detect spatial patterns of the long-term trends in snow depths across the HKH region. The geospatial analysis included the use of emerging hot spots analysis. The results of our analysis revealed three broad regional clusters of long-term trends, including western, central, and eastern regions. Both eastern and western regions displayed declining snow depths, whereas the central region experienced areas of increasing snow depths. We also examined the localized long-term trends of snow depth around mega cities in the region, to delineate the role of urbanization on snow cover. The local level trends around the mega cities showed variable trends, determined by elevation and local pollution levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahmadi AS, Kajita Y (2017) Evaluation of urban land development direction in Kabul city. Afghanistan. Int J Urban Civ Eng 11(2):152–162

    Google Scholar 

  • Azizi AH, Asaoka Y (2020) Incorporating snow model and snowmelt runoff model for streamflow simulation in a snow-dominated mountainous basin in the western Hindukush-Himalaya region. Hydrol Res Lett 14(1):34–40

    Article  Google Scholar 

  • Bibi L, Khan AA, Khan G, Ali K, Qureshi J, Jan IU (2019) Snow cover trend analysis using modis snow products: a case of Shayok River Basin in Northern Pakistan. J Himalayan Earth Sci 52(2):145–160

    Google Scholar 

  • Bilal H, Chamhuri S, Mokhtar MB, Kanniah KD (2019) Recent snow cover variation in the upper Indus basin of Gilgit Baltistan. Hindukush Karakoram Himalaya. J Mt Sci 16(2):296–308

    Google Scholar 

  • Bolch T et al (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya Region. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people. Springer, Cham, pp 209–255. https://doi.org/10.1007/978-3-319-92288-1_7

    Chapter  Google Scholar 

  • Bonekamp PNJ, de Kok RJ, Collier E, Immerzeel WW (2019) Contrasting meteorological drivers of the glacier mass balance between the Karakoram and Central Himalaya. Front Earth Sci 7:107. https://doi.org/10.3389/feart.2019.00107

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res. https://doi.org/10.1029/2009JF001426

    Article  Google Scholar 

  • Brasnett B (1999) A global analysis of snow depth for numerical weather prediction. J Appl Meteorol 38:726–740

    Article  Google Scholar 

  • Brown RD, Brasnett B (2010) Canadian Meteorological Centre (CMC) daily snow depth analysis data. Environment Canada, p 169

  • Brown RD, Brasnett B, Robinson D (2003) Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos Ocean 41(1):1–14. https://doi.org/10.3137/ao.410101

    Article  Google Scholar 

  • Brown R, Derksen C, Wang L (2010) A multi‐data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J Geophys Res Atmos 115. https://doi.org/10.1029/2010JD013975

  • Bunting R, Chang OY, Cowen C, Hankins R, Langston S, Warner A, Yang X, Louderback ER, Sen Roy S (2018) Spatial patterns of larceny and aggravated assault in Miami-Dade county, 2007–2015. Prof Geogr 70(1):34–46. https://doi.org/10.1080/00330124.2017.1310622

    Article  Google Scholar 

  • Butt MJ (2012) Characteristics of snow cover in the Hindukush, Karakoram and Himalaya region using Landsat satellite data. Hydrol Process 26(24):3689–3698

    Article  Google Scholar 

  • Carter J, Louderback ER, Vildosola D, Sen Roy S (2020) Crime in an affluent city: Spatial patterns of property crime in Coral Gables, Florida. Eur J Crim Policy Res 26:547–570

    Article  Google Scholar 

  • de Kok RJ, Kraaijenbrink PDA, Tuinenburg OA, Bonekamp PNJ, Immerzeel WW (2020) Towards understanding the pattern of glacier mass balances in high mountain Asia using regional climatic modelling. Cryosphere 14(9):3215–3234. https://doi.org/10.5194/tc-14-3215-2020

    Article  Google Scholar 

  • Desinayak N, Prasad AK, El-Askary H, Kafatos M, Asrar GR (2021) Snow cover variability and trend over Hindu Kush Himalayan region using MODIS and SRTM data. Ann Geophys Discuss 40(1):1–24

    Google Scholar 

  • Dong D, Xu X, Yu H, Zhao Y (2019) The impact of air pollution on domestic tourism in China: a spatial econometric analysis. Sustainability 11(15):4148. https://doi.org/10.3390/su1115414

    Article  Google Scholar 

  • Eglitis L (2021) Climate of Kabul. World Data.info. Last Accessed 02/02/2021 Climate of Kabul, Afghanistan (worlddata.info).

  • ESRI (2023) https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/emerginghotspots.htm. Accessed 19 May 2023

  • ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau (2007) World Cities. Last accessed 14 Feb 2021

  • Farinotti D, Immerzeel WW, de Kok RJ, Quincey DJ, Dehecq A (2020) Manifestations and mechanisms of the Karakoram glacier anomaly. Nat Geosci 13(1):8–16. https://doi.org/10.1038/s41561-019-0513-5

    Article  Google Scholar 

  • Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, Edwards TL, Golledge NR, Hemer M, Kopp RE, Krinner G, Mix A, Notz D, Nowicki S, Nurhati IS, Ruiz L, Sallée J-B, Slangen ABA, Yu Y (2021) Ocean, cryosphere and sea level change. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1211–1362

    Google Scholar 

  • Gurung DR, Giriraj A, Aung KS, Shrestha BR, Kulkarni AV (2011) Snow-cover mapping and monitoring in the Hindu Kush-Himalayas. International Centre for Integrated Mountain Development (ICIMOD)

  • Haq F, Naeem UA, Gabriel HF, Khan NM, Ahman I, Rehman HU, Zafar MA (2021) Impact of urbanization on groundwater levels in Rawalpindi City, Pakistan. Pure Appl Geophys 178:491–500. https://doi.org/10.1007/s00024-021-02660-y

    Article  Google Scholar 

  • Hewitt K (2011) Glacier change concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mount Res Dev 31(3):188–200. https://doi.org/10.1659/MRD-JOURNAL-D-11-00020.1

    Article  Google Scholar 

  • Hsu A, Esty D, Levy A et al (2016) 2016 Environmental performance index. Yale University, New Haven

    Google Scholar 

  • https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/World_Cities/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326f&f=json

  • Ives JD, Messerli B (1989) The Himalayan dilemma: reconciling development and conservation. Psychology Press, London

    Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first century glacier mass change in the Himalayas. Nature 488(7412):495–498. https://doi.org/10.1038/nature11324

    Article  Google Scholar 

  • Khan MZ, Begum F, Riaz M, Khan B, Karim R, Ali K, Aman S (2019) Predicting the potential impacts of trophy hunting on population structure of himalayan ibex (capra sibirica) in Northern Pakistan. Pol J Ecol 67(3):264–270

    Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4:587–592. https://doi.org/10.1038/nclimate2237

    Article  Google Scholar 

  • Mahmoodzada AB, Varade D, Shimada S (2020) Estimation of snow depth in the Hindu Kush Himalayas of Afghanistan during peak winter and early melt season. Remote Sens 12(17):2788

    Article  Google Scholar 

  • Mahmoodzada AB, Varade D, Shimada S, Rezazada FA, Mahmoodzada AS, Jawher AN, Toghyan M (2022) Capability assessment of Sentinel-1 data for estimation of snow hydrological potential in the Khanabad watershed in the Hindu Kush Himalayas of Afghanistan. Remote Sens Appl Soc Environ 26:100758

    Google Scholar 

  • NASA JPL (2013) NASA shuttle radar topography mission global 1 arc second [DEM]. NASA EOSDIS Land Process DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003

  • Nepali Times (2021) Kathmandu air pollution hits record high. https://www.nepalitimes.com/latest/kathmandu-air-pollution-hits-record-high/#:~:text=Winter%20inversion%2C%20vehicular%20emission,complications%20for%20Covid%2D19%20patients. Accessed on Mar 15 2022

  • Niu G-Y, Yang ZL (2007) An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J Geophys Res 112:D21101. https://doi.org/10.1029/2007JD008674

    Article  Google Scholar 

  • Notarnicola C (2020) Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens Environ 243:111781. https://doi.org/10.1016/j.rse.2020.111781

    Article  Google Scholar 

  • Rahmany NA, Patmal MH (2021) Impact of solar heating technology installation on reduction of greenhouse gas emissions in Kabul city. Int J Innovative Res Sci Stud 4(2):53–61

    Google Scholar 

  • Rasul G, Hussain A (2015) Sustainable food security in the mountains of Pakistan: towards a policy framework. Ecol Food Nutr 54:625–643. https://doi.org/10.1080/03670244.2015.1052426

    Article  Google Scholar 

  • Ren YY, Ren GY, Sun XB, Shrestha AB, You QL, Zhan YJ, Rajbhandari R, Zhang PF, Wen KM (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv Clim Change Res 8(3):148–156

    Article  Google Scholar 

  • Saud B, Paudel G (2018) The threat of ambient air pollution in Kathmandu. Nepal. J Environ Public Health 2018:1504591

    Google Scholar 

  • Scull E (2008) Environmental health challenges in Xinjiang. Research brief produced as part of the China Environment Forums partnership with Western Kentucky University on the USAID-supported China Environmental Health Project, Western Kentucky

  • Sen Roy S (2022) Role of ENSO on conflicts in the global south. Front Clim 4:752355. https://doi.org/10.3389/fclim.2022.752355

    Article  Google Scholar 

  • Shean DE et al (2020) A systematic, regional assessment of high mountain Asia glacier mass balance. Front Earth Sci 7:363. https://doi.org/10.3389/feart.2019.00363

    Article  Google Scholar 

  • Shrestha AB, Agrawal NK, Alfthan B, Bajracharya SR, Maréchal J, Oort BV (2015) The Himalayan climate and water atlas: impact of climate change on water resources in five of Asia’s major river basins. ICIMOD, GRID-Arendal and CICERO, Kathmandu

    Google Scholar 

  • Singh SP, Bassignana-Khadka I, Singh Karky B, Sharma E (2011) Climate change in the Hindu Kush-Himalayas: the state of current knowledge. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu

    Google Scholar 

  • Snapir B, Momblanch A, Jain SK, Waine TW, Holman IP (2019) A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin. Int J Appl Earth Obs Geoinf 74:222–230

    Google Scholar 

  • Thapa RB, Murayama Y, Ale S (2008) Kathmandu. Cities 25(1):45–57. https://doi.org/10.1016/j.cities.2007.10.001

    Article  Google Scholar 

  • Tullis-Joyce P, Sen Roy S (2021) Occurrence of Karenia brevis near Southwest Florida coast 1953 to 2017: A geospatial analysis. J Coast Conserv Plan Manag 25:57

    Article  Google Scholar 

  • Wang W, Ribang L, Yongfeng L, Hairong L, Linsheng Y, Jianan T (2004) Regional comprehensive assessment on environment-health of China. J Geo Sci 14(2):187–192. https://doi.org/10.1007/BF02837534

    Article  Google Scholar 

  • Wester P, Mishra A, Mukherji A, Shrestha AB (2019) The Hindu Kush Himalaya assessment. Springer Nature, Cham. https://doi.org/10.1007/978-3-319-92288-1_1

    Book  Google Scholar 

  • Wright JL, Sen Roy S (2022) Geospatial characteristics of Colorado wildfire occurrences from 2001 to 2020. Remote Sens Appl Soc Environ 28:100872

    Google Scholar 

  • Wu Q, Cheng J, Liu D, Han L, Yang Y (2015) Kunming: A regional international mega city in Southwest China. In: Singh R (ed) Urban development challenges, risks and resilience in Asian mega cities. Advances in geographical and environmental sciences. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55043-3_17

    Chapter  Google Scholar 

  • Yang YH, Zhou F, Guo HC, Sheng H, Liu H, Dao X, He CJ (2009) Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ Monit Assess 170:407–416. https://doi.org/10.1007/s10661-009-1242-9

    Article  Google Scholar 

  • Yao T et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):6637. https://doi.org/10.1038/nclimate1580

    Article  Google Scholar 

  • You Q-L et al (2017) An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv Clim Chang Res 8(3):141–147. https://doi.org/10.1016/j.accre.2017.04.001

    Article  Google Scholar 

  • Zhang Y-F, Hoar TJ, Yang ZL, Anderson JL, Toure AM, Rodell M (2014) Assimilation of MODIS snow cover through the data assimilation research testbed and the community land model version 4. J Geophys Res Atmos 119:7091–7103. https://doi.org/10.1002/2013JD021329

    Article  Google Scholar 

  • Zhang Y, Kang S, Cong Z, Schmale J, Sprenger M, Li C, Yang W, Gao T, Sillanpää M, Li X, Liu Y, Chen P, Zhang X (2017) Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau. J Geophy Res 122:6915–6933. https://doi.org/10.1002/2016JD026397

    Article  Google Scholar 

  • Zong L, He S, Lian J, Bie Q, Wang X, Dong J, Xie Y (2020) Detailed mapping of urban land use based on multi-source data: a case study of Lanzhou. Remote Sens. https://doi.org/10.3390/rs12121987

    Article  Google Scholar 

  • Zurick D, Pacheco J, Shrestha B, Bajracharya B (2005) Atlas of the Himalaya. ICIMOD, Kathmandu

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouraseni Sen Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interest.

Additional information

Edited by Prof. Ewa Bednorz (ASSOCIATE EDITOR) / Prof. Theodore Karacostas (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conyers, Z., Roy, S.S. A geospatial analysis of long-term trends in snow depth in the Hindu Kush Himalayan region: 1999–2019. Acta Geophys. 71, 2535–2544 (2023). https://doi.org/10.1007/s11600-023-01115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01115-3

Keywords

Navigation