Skip to main content

Advertisement

Log in

Modeling daily reference evapotranspiration using SVR machine learning algorithm with limited meteorological data in Dar-el-Beidha, Algeria

  • Research Article - Hydrology and Hydraulics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Reference evapotranspiration (ETo) is a critical water resource management parameter, including irrigation scheduling and crop water requirements. Because large uncertainties in estimating ETo can result in equally large uncertainties in determining water budgets and crop water requirements, and vice versa, accurate determination of ETo can be challenging when direct measurement and estimation with the Penman–Monteith (FAO-56-PM) semi-empirical equation of the food and agriculture organization (FAO) is not possible. Indeed, this study explores the use of the support vector regression machine learning algorithm (SVR) to predict daily ETo with limited measured inputs. It is the first time that Julian Day (J) is included as an input to improve prediction accuracy. Ten years of meteorological data collected at the Dar-El-Beidha weather station in Algeria are used, with maximum, minimum, and mean air temperatures (TM, tm, and T), mean relative humidity (RH), mean wind speed (u2), and sunshine duration (n) as inputs, as well as J and extraterrestrial solar radiation (Ra) as auxiliary variables, and the ETo-FAO-56-PM values as target outputs. Several SVR models are developed using different combinations of inputs, and their performance is assessed relative to ETo-FAO-56-PM values. Empirical equations are also used for comparison, and several evaluation metrics are employed, including root mean square error (RMSE), mean absolute percentage error (MAPE), determination coefficient (R2), RMSE-standard deviation ratio (RSR), Nash–Sutcliffe efficiency coefficient (NSE), and Willmott’s refined index (WI). The results show that the SVR models utilizing limited meteorological inputs in addition to J and/or Ra predicted ETo accurately and outperformed their corresponding estimates using empirical equations, radial basis function neural networks (RBFNN), and adaptive neuro-fuzzy inference systems (ANFIS) models obtained in previous studies. The RMSE ranged from 0.28 to 0.72 mm/day, R2 from 0.86 to 0.98, MAPE from 7 to 19%, RSR from 0.15 to 0.38, NSE from 0.86 to 0.98, and WI from 0.65 to 0.87. These findings could provide useful solutions for ETo estimation issues in areas with sparse data and agro-climatic conditions similar to those of Dar-El-Beidha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

The authors wish to thank and express their gratitude to the Meteorological National Office (ONM), Algiers, Algeria, for giving the authors access to the weather data of Dar-El-Beidha station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Zereg.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Additional information

Edited by Dr. Ankit Garg (ASSOCIATE EDITOR) / Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zereg, S., Belouz, K. Modeling daily reference evapotranspiration using SVR machine learning algorithm with limited meteorological data in Dar-el-Beidha, Algeria. Acta Geophys. 72, 2009–2025 (2024). https://doi.org/10.1007/s11600-023-01107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01107-3

Keywords

Navigation