Skip to main content

Advertisement

Log in

Earthquake network construction models: from Abe-Suzuki to a multiplex approach

  • Review Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

From the early stage of seismological research, a complex network is one of the statistical methods to investigate the complexity of earthquake systems. The benefit of using this method is to inspect the systems with minimum information about their entities and corresponding interactions. Achieving a high interest in studying the seismic events using the complex network resulted in defining models to map the seismic data into networks. Application of these models to the seismic data sets in nonidentical geographical regions has yielded promising results independent of time and location. In this review, we bring in the recent famous models varying from monolayer to multiplex and compare their proficiency in capturing the complexity of the seismicity by using two data sets from Iran and California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://www.irsc.ut.ac.ir.

  2. http://www.usgs.gov/.

References

  • Abe S, Okamoto Y (2001) Nonextensive statistical mechanics and its applications, vol 560. Springer, Berlin

    Book  Google Scholar 

  • Abe S, Suzuki N (2004) Small-world structure of earthquake network. Phys A 337(1–2):357–362

    Article  Google Scholar 

  • Abe S, Suzuki N (2005) Scale-free statistics of time interval between successive earthquakes. Phys A 350(2–4):588–596

    Article  Google Scholar 

  • Abe S, Suzuki N (2006) Complex earthquake networks: hierarchical organization and assortative mixing. Phys Rev E 74(2):026113

    Article  Google Scholar 

  • Abe S, Suzuki N (2012) Dynamical evolution of the community structure of complex earthquake network. Europhys Lett 99(3):39001

    Article  Google Scholar 

  • Altınok Y (1991) Evaluation of earthquake risk in west anatolia by semi-markov model. Geophysics 5:135–140

    Google Scholar 

  • Altinok Y, Kolcak D (1999) An application of the semi-markov model for earthquake occurrences in North Anatolia, Turkey. J Balkan Geophys Soc 2(4):90–99

    Google Scholar 

  • Banavar JR, Maritan A, Rinaldo A (1999) Size and form in efficient transportation networks. Nature 399(6732):130–132

    Article  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  Google Scholar 

  • Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69

    Article  Google Scholar 

  • Billio M, Getmansky M, Lo AW, Pelizzon L (2012) Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J Financ Econ 104(3):535–559

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    Article  Google Scholar 

  • Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323(5916):892–895

    Article  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  Google Scholar 

  • Cardillo A, Gómez-Gardenes J, Zanin M, Romance M, Papo D, Pozo F, Boccaletti S (2013) Emergence of network features from multiplexity. Sci Rep 3(1):1–6

    Article  Google Scholar 

  • Costa LF, Oliveira ON Jr, Travieso G, Rodrigues FA, Villas Boas PR, Antiqueira L, Viana MP, Correa Rocha LE (2011) Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys 60(3):329–412

    Article  Google Scholar 

  • Darooneh AH, Lotfi N (2014) Active and passive faults detection by using the pagerank algorithm. Europhys Lett 107(4):49001

    Article  Google Scholar 

  • De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, Gómez S, Arenas A (2013) Mathematical formulation of multilayer networks. Phys Rev X 3(4):041022

    Google Scholar 

  • Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. Europhys Lett 87(4):48007

    Article  Google Scholar 

  • Donges JF, Donner RV, Kurths J (2013) Testing time series irreversibility using complex network methods. Europhys Lett 102(1):10004

    Article  Google Scholar 

  • Emmert-Streib F, Dehmer M (2010) Influence of the time scale on the construction of financial networks. PLoS ONE 5(9):e12884

    Article  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Article  Google Scholar 

  • Guye M, Bettus G, Bartolomei F, Cozzone PJ (2010) Graph theoretical analysis of structural and functional connectivity mri in normal and pathological brain networks. MAGMA 23(5):409–421

    Article  Google Scholar 

  • Helmstetter A, Kagan Y, Jackson D (2007) High-resolution time-independent grid-based forecast for m>= 5 earthquakes in California. Seismol Res Lett 78(1):78–86

    Article  Google Scholar 

  • Herrera C, FA N, Lomnitz C (2006) Time-dependent earthquake hazard evaluation in seismogenic systems using mixed markov chains: an application to the Japan area. Earth Planet Space 58(8):973–979

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  Google Scholar 

  • Kagan Y, Jackson D (1994) Long-term probabilistic forecasting of earthquakes. J Geophys Res 99(B7):13685–13700

    Article  Google Scholar 

  • Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Article  Google Scholar 

  • Lacasa L, Toral R (2010) Description of stochastic and chaotic series using visibility graphs. Phys Rev E 82(3):036120

    Article  Google Scholar 

  • Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci 105(13):4972–4975

    Article  Google Scholar 

  • Lacasa L, Luque B, Luque J, Nuno JC (2009) The visibility graph: a new method for estimating the hurst exponent of fractional Brownian motion. Europhys Lett 86(3):30001

    Article  Google Scholar 

  • Lotfi N (2023) The earthquake network: the best time scale for network construction. arXiv:2301.02073

  • Lotfi N, Darooneh A (2012) The earthquakes network: the role of cell size. Eur Phys J B 85(1):1–4

    Article  Google Scholar 

  • Lotfi N, Darooneh AH (2013) Nonextensivity measure for earthquake networks. Phys A 392(14):3061–3065

    Article  Google Scholar 

  • Lotfi N, Darooneh AH, Rodrigues FA (2018) Centrality in earthquake multiplex networks. Chaos 28(6):063113

    Article  Google Scholar 

  • Martín FA, Pastén D (2022) Complex networks and the b-value relationship using the degree probability distribution: the case of three mega-earthquakes in chile in the last decade. Entropy 24(3):337

    Article  Google Scholar 

  • Mello MA, Felix GM, Pinheiro RB, Muylaert RL, Geiselman C, Santana SE, Tschapka M, Lotfi N, Rodrigues FA, Stevens RD (2019) Insights into the assembly rules of a continent-wide multilayer network. Nat Ecol Evol 3(11):1525–1532

    Article  Google Scholar 

  • Nava FA, Herrera C, Frez J, Glowacka E (2005) Seismic hazard evaluation using Markov chains: application to the Japan area. Pure Appl Geophys 162(6):1347–1366

    Article  Google Scholar 

  • Omori F (1894) On the aftershocks of earthquakes. J Colloid Interface Sci 7:111–120

    Google Scholar 

  • Pastén D, Czechowski Z, Toledo B (2018) Time series analysis in earthquake complex networks. Chaos Interdiscip J Nonlinear Sci 28(8):083128

    Article  Google Scholar 

  • Rezaei S, Darooneh AH, Lotfi N, Asaadi N (2017) The earthquakes network: retrieving the empirical seismological laws. Phys A 471:80–87

    Article  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  Google Scholar 

  • Stein S, Wysession M (2009) An introduction to seismology, earthquakes, and earth structure. Wiley, Hoboken

    Google Scholar 

  • Szell M, Lambiotte R, Thurner S (2010) Multirelational organization of large-scale social networks in an online world. Proc Natl Acad Sci 107(31):13636–13641

    Article  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP et al (2015) String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452

    Article  Google Scholar 

  • Telesca L, Lovallo M (2012) Analysis of seismic sequences by using the method of visibility graph. Europhys Lett 97(5):50002

    Article  Google Scholar 

  • Telesca L, Lovallo M, Aggarwal S, Khan P, Rastogi B (2016) Visibility graph analysis of the 2003–2012 earthquake sequence in the Kachchh region of Western India. Pure Appl Geophys 173(1):125–132

    Article  Google Scholar 

  • Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2012) Estimation of the expected number of earthquake occurrences based on semi-Markov models. Methodol Comput Appl Probab 14(3):685–703

    Article  Google Scholar 

  • Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2013) Hidden Markov models revealing the stress field underlying the earthquake generation. Phys A 392(13):2868–2885

    Article  Google Scholar 

  • Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2014) Hidden semi-Markov modeling for the estimation of earthquake occurrence rates. Commun Stat Theory Methods 43(7):1484–1502

    Article  Google Scholar 

  • Wang XF, Chen G (2003) Complex networks: small-world, scale-free and beyond. Circuits Syst Mag IEEE 3(1):6–20

    Article  Google Scholar 

  • Wang X, Koç Y, Derrible S, Ahmad SN, Pino WJ, Kooij RE (2017) Multi-criteria robustness analysis of metro networks. Phys A 474:19–31

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440–442

    Article  Google Scholar 

  • Zhang X, Gan C (2018) Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks. Phys A 490:1004–1018

    Article  Google Scholar 

Download references

Acknowledgements

N. Lotfi is thankful to the FAPESP (Grant with Number 2020/08359-1) for the support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nastaran Lotfi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Edited by Prof. Norikazu Suzuki (ASSOCIATE EDITOR) / Prof. Ramón Zúñiga (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, N. Earthquake network construction models: from Abe-Suzuki to a multiplex approach. Acta Geophys. 71, 1111–1117 (2023). https://doi.org/10.1007/s11600-023-01025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01025-4

Keywords

Navigation