Skip to main content
Log in

A review of the state of research on bridge pier scour under combined action of waves and current

  • Review Article - Hydrology
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This article presents a review of the state of research on bridge pier scour under combined wave–current flow. The hydrodynamics and scour around the bridge pier under combined wave–current flow have been explained in detail based on the information available in the literature. The impact of relative flow velocity (Ucw), Keulegan–Carpenter number (KC), absolute Reynolds number (Rea), and sediment characteristics on bridge pier scour under combined wave–current flow is presented. This study includes physical modelling of scour with various formulations to predict scour depth and calculation procedures related to scour under combined wave–current flow in the coastal environment. In addition, this study also provides the development of numerical models to investigate bridge pier scour in detail. In the end, future prospects of hydrodynamics and scour around the bridge pier under combined wave–current flow are delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A w :

Semi-orbital excursion (m)

C D :

Drag coefficient of current flow

d 50 :

Mean particle diameter (m)

d s :

Equilibrium scour depth (m)

D :

Pier diameter (m)

D * :

Dimensionless particle diameter

f w :

Wave friction factor

Fr :

Froude number

Fr a :

Froude number considering dimensionless scour depth

\(g\) :

Acceleration due to gravity (m/s2)

G :

Shear modulus of soil skeleton (Pa)

h :

Flow depth (m)

H :

Wave height (m)

k :

Wave number

k s :

Nikuradse bed roughness coefficient

k p :

Coefficient of permeability

k t :

Wave transmission coefficient;

K :

Karman constant

KC :

Keulegan–Carpenter number

L :

Characteristic length (m)

M :

Fitted factor

N :

Fitted factor

n :

Porosity

R :

Hydraulic radius (m)

R eD :

Pile Reynolds number

S :

Specific gravity of sand (kg/m3)

S c :

Equilibrium scour depth due to current (m)

S r :

Degree of saturation of soil mass;

S t :

Temporal variation of scour depth (m)

S wc :

Equilibrium scour depth under wave–current flow (m)

t :

Scour time (s)

t e :

Time required for the development of equilibrium scour depth (m)

T :

Timescale

T * :

Normalized timescale

T w :

Wave period (s)

U a :

Absolute velocity (m/s)

U c :

Flow velocity of current (m/s)

U m :

Maximum velocity of combined wave–current flow (m/s)

U wm :

Amplitude of orbital velocity near bed (m/s)

U cw :

Relative flow velocity

r:

Relative roughness

R :

Radius of scour hole (m)

R w :

Wave Reynolds number

x :

X direction

y :

Y direction

z :

Z direction

z0 :

Bed roughness length (m)

δ :

Bed boundary layer thickness (m)

δ s :

Width of the scoured flatbed near the bridge pier, i.e., Zone 2 (m)

θ :

Shields parameter

θ cr :

Critical Shields parameter

φ :

Angle of repose for sediment particle (°)

φ d :

Dynamic angle of repose of the scour hole (°)

\(\phi\)′:

Angle between wave and current (°)

ρ :

Density of water (kg/m3)

ρ s :

Density of sediment particle (kg/m3)

σg :

Standard deviation of grain size distribution

τ :

Bed shear stress (N/m2)

τ cr :

Critical bed shear stress (N/m2)

τ c :

Maximum bottom shear stress induced by current (N/m2)

τ w :

Maximum shear stress induced by wave (N/m2)

τ max :

Maximum bed shear stress (N/m2)

ʋ :

Kinematic viscosity (m2 /s)

References

  • Abbasnia AH, Ghiassi R (2011) Improvements on bed-shear stress formulation for pier scour computation. Int J Numer Methods Fluids 67:383–402

    Article  Google Scholar 

  • Afzal MS, Kumar L (2021) Propagation of waves over a rugged topography. J Ocean Eng Sci 7(1):14–28. https://doi.org/10.1016/j.joes.2021.04.004

    Article  Google Scholar 

  • Afzal MS, Holmedal LE, Myrhaug D (2015) Three-dimensional streaming in the seabed boundary layer beneath propagating waves with an angle of attack on the current. J Geophys Res Ocean. https://doi.org/10.1002/2015JC010793

    Article  Google Scholar 

  • Afzal MS, Bihs H, Kumar L (2020) Computational fluid dynamics modeling of abutment scour under steady current using the level set method. Int J Sediment Res 35:355–364. https://doi.org/10.1016/j.ijsrc.2020.03.003

    Article  Google Scholar 

  • Afzal MS, Holmedal LE, Myrhaug D (2021) Sediment transport in combined wave–current seabed boundary layers due to streaming. J Hydraul Eng 147:4021007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001862

    Article  Google Scholar 

  • Afzal MA, Bihs H, Arntsen ØA (2014) 3D Numerical Modelling of Contraction Scour under Steady Current Using the Level Set Method. In: ICHE 2014. Proceedings of the 11th International Conference on Hydroscience and Engineering. pp 525–530.

  • Agrawal KA, Khan MA, Yi Z (2005) Handbook of Scour Countermeasures Designs (No FHWA-NJ-2005–027). New Jersey Department of Transportation.

  • Agui JH, Andreopoulos J (1992) Experimental investigation of a three-dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder. J Fluids Eng 114(4):566–576. https://doi.org/10.1115/1.2910069

    Article  Google Scholar 

  • Ali KHM, Karim O (2002) Simulation of flow around piers. J Hydraul Res 40:161–174

    Article  Google Scholar 

  • Apsilidisl N, Diplas P, Dancey CL, et al (2010) Local scour at bridge piers: the role of reynolds number on horseshoe vortex dynamics. In: Proceedings 5th international conference on scour and Erosion (ICSE-5), 2010, San Francisco, USA. pp 86–94

  • Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE (2012) Hydraulic Engineering Circular No 18: evaluating scour at bridges. US Dep Transp

  • Azamathulla HM, Ghani AA, Zakaria NA, Guven A (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng 136:165

    Article  Google Scholar 

  • Baker VR (1979) Erosional processes in channelized water flows on Mars. J Geophys Res Solid Earth 84:7985–7993

    Article  Google Scholar 

  • Belibassakis KA, Athanassoulis GA, Gerostathis TP (2001) A coupled-mode model for the refraction–diffraction of linear waves over steep three-dimensional bathymetry. Appl Ocean Res 23:319–336

    Article  Google Scholar 

  • Bouratsis P, Diplas P, Dancey CL, Apsilidis N (2017) Quantitative spatio-temporal characterization of scour at the base of a cylinder. Water 9:227

    Article  Google Scholar 

  • Breusers HNC, Nicollet G, Shen HW (1977) Local scour around cylindrical piers. J Hydraul Res 15:211–252

    Article  Google Scholar 

  • Breusers HNC, Raudkivi AJ (1991) Scouring AA Balkema

  • Chabert J, Engeldinger P (1956) Study of scour around bridge piers. Rep Prep Lab Natl d’Hydraulique

  • Chen B, Li S (2018) Experimental Study of Local Scour around a vertical cylinder under wave-only and combined wave-current conditions in a large-scale flume. J Hydraul Eng 144:4018058

    Article  Google Scholar 

  • Chiew Y-M (1992) Scour protection at bridge piers. J Hydraul Eng 118:1260–1269

    Article  Google Scholar 

  • Chiew YM, Melville BW (1989) Local scour at bridge piers with non-uniform sediments. Proc Inst Civ Eng 87:215–224

    Google Scholar 

  • Chiew YM (1984) Local scour at bridge piers. ResearchSpace@ Auckland

  • Craswell T, Akib S (2020) Reducing bridge pier scour using gabion mattresses filled with recycled and alternative materials. Eng 1(2):188–210

    Article  Google Scholar 

  • Dargahi B (1989) The turbulent flow field around a circular cylinder. Exp Fluids 8:1–12

    Article  Google Scholar 

  • Dargahi B (2003) Three-dimensional modelling of ship-induced flow and erosion. Proc Instit Civ EngWater Marit Eng 152(2):193–204

    Google Scholar 

  • Debnath K, Chaudhuri S (2010) Bridge pier scour in clay-sand mixed sediments at near-threshold velocity for sand. J Hydraul Eng 136(9):597–609

    Article  Google Scholar 

  • Dey S (2001) Experimental studies on incipient motion of sediment particles on generalized sloping fluvial beds. J Sediment Res 16(3):391–398

    Google Scholar 

  • Dey S (2014) Fluvial hydrodynamics. Springer

    Book  Google Scholar 

  • Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876

    Article  Google Scholar 

  • Dey S, Sumer BM, Fredsøe J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng 132(3):270–279

    Article  Google Scholar 

  • Dey S, Bose S, Sastry GLN (1992a) Clear water scour at circular piers, part I: Flow model. In Proceedings of the 8th Conference IAHR Asian and Pacific Division. pp. 69–80.

  • Dey S, Bose S, Sastry GLN (1992b) Clear water scour at circular piers, part II: Flow model. In Proceedings of the 8th Conference IAHR Asian and pacific division. pp. 81–92

  • Drake DE, Cacchione DA, Grant WD (1992) Shear stress and bed roughness estimates for combined wave and current flows over a rippled bed. J Geophys Res Ocean 97(C2):2319–2326

    Article  Google Scholar 

  • Dyrseth S (2015) Time scales for scour below pipelines and around vertical piles in nonlinear random waves and current. NTNU.

  • Eadie RW IV, Herbich JB (1987) Scour about a single, cylindrical pile due to combined random waves and a current. Coast Eng 206:1858–1870

    Article  Google Scholar 

  • Ebersole BBA (1985) Refraction-diffraction model for linear water waves. J Waterw Port, Coast, Ocean Eng 111(6):939–953

    Article  Google Scholar 

  • Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Hydrol Res 7(5):293–306

    Article  Google Scholar 

  • Engelund F, Fredsøe J (1982) Hydraulic theory of alluvial rivers. Adv Hydrosci Elsev 13:187–215

    Article  Google Scholar 

  • Escauriaza C, Sotiropoulos F (2011) Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier. J Geophys Res Earth Surf 116(3):109

    Google Scholar 

  • Ettema R, Constantinescu G, Melville BW (2017) Flow-field complexity and design estimation of pier-scour depth: sixty years since Laursen and Toch. J Hydraul Eng 143(9):3117006

    Article  Google Scholar 

  • Ettema R (1980) Scour at bridge piers

  • Fotherby LM (1993) Alternatives to riprap for protection against local scour at bridge piers. Tran Res Rec 1420:1–12

    Google Scholar 

  • Fredsoe J, Sumer BM, Arnskov MM, others (1991) Time scale for wave/current scour below pipelines. In: the first international offshore and polar engineering conference.

  • Fredsoe J, Sumer BM (2006) Hydrodynamics around cylindrical structures (revised edition). World Scientific, Singapore

    Google Scholar 

  • Gautam S, Dutta D, Bihs H, Afzal MS (2021) Three-dimensional computational fluid dynamics modelling of scour around a single pile due to combined action of the waves and current using level-set method. Coast Eng 170:104002. https://doi.org/10.1016/j.coastaleng.2021.104002

    Article  Google Scholar 

  • Gazi AH, Afzal MS, Dey S (2019) Scour around piers underwaves: current status of research and its future prospect. Water 11(11):1–14

    Article  Google Scholar 

  • Ge L, Sotiropoulos F (2005) 3D unsteady RANS modeling of complex hydraulic engineering flows I: numerical model. J Hydraul Eng 131(9):800–808

    Article  Google Scholar 

  • Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225(2):1782–1809. https://doi.org/10.1016/j.jcp.2007.02.017

    Article  Google Scholar 

  • Ghorbani B, Kells JA (2008) Effect of submerged vanes on the scour occurring at a cylindrical pier. J Hydraul Res 46(5):610–619

    Article  Google Scholar 

  • Graf WH, Istiarto I (2002) Flow pattern in the scour hole around a cylinder. J Hydraul Res 40(1):13–20

    Article  Google Scholar 

  • Hartvig PA, Thomsen JM, Frigaard P, Andersen TL (2010) Experimental study of the development of scour and backfilling. Coast Eng J 52(02):157–194. https://doi.org/10.1142/S0578563410002154

    Article  Google Scholar 

  • Heidarpour M (2002) Control and reduction of local scour at bridge piers by using slot. In: Proceeding International Conference on Fluvial Hydraulics. pp 3–6

  • Hjorth P (1975) Studies on the nature of local scour. Inst. för Teknisk Vattenresurslära, Lunds Tekniska Högskola, Lunds Univ

  • Hudspeth RT (2006) Waves and wave forces on coastal and ocean structures. World scientific, Singapure, p 109

    Book  Google Scholar 

  • Hussein HJ, Martinuzzi RJ (1996) Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys Fluids 8(5):764–780

    Article  Google Scholar 

  • Jia YY, Wang X, Wang SS (2002) Numerical simulation of local scouring around a cylindrical pier. First Int Conf Scour Foundat 17:1181–1187

    Google Scholar 

  • Jing L, Ridd PV (1996) Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay. Australia Coast Eng 29(1):169–186

    Article  Google Scholar 

  • Jonsson IG (1990) Wave-current interactions. In: LeMehaute B, Hanes DM (eds) the sea, ocean engineering science Journal. Wile, New Sersey, pp 65–120

    Google Scholar 

  • Kawata Y, Tsuchiya Y (1989) Local scour around cylindrical piles due to waves and currents combined. Coast Eng 1988:1310–1322

    Article  Google Scholar 

  • Keulegan GH, Carpenter LH et al (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60(5):423–440

    Article  Google Scholar 

  • Keutner C (1932) Stromungsvorgange an strompfeilern von verschiedenen grundrissformen und ihre einwirkung auf die flussohle. Die Bautechnik 10:161–170

    Google Scholar 

  • Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech B/fluids 22(6):603–634

    Article  Google Scholar 

  • Khosronejad A, Kang S, Borazjani I, Sotiropoulos F (2011) Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv Water Resour 34(7):829–843

    Article  Google Scholar 

  • Khosronejad A, Kang S, Sotiropoulos F (2012) Experimental and computational investigation of local scour around bridge piers. Adv Water Resour 37:73–85

    Article  Google Scholar 

  • Kim UY, Kim Jon-S, Ahn SJ, Hahm C-H (2005) Scour countermeasure using additional facility in front of bridge pier. Proc 31st IAHR Congr Seoul 1289–1290.

  • Kirkil G, Constantinescu SG, Ettema R (2008) Coherent structures in the flow field around a circular cylinder with scour hole. J Hydraul Eng 134(5):572–587

    Article  Google Scholar 

  • Kirkil G, Constantinescu G, Ettema R (2009) Detached eddy simulation investigation of turbulence at a circular pier with scour hole. J Hydraul Eng 135(11):888

    Article  Google Scholar 

  • Kirkil G, Constantinescu SG, Ettema R (2005) The horseshoe vortex system around a circular bridge pier on a flat bed. In: XXXIst International association hydraulic research congress, Seoul, Korea.

  • Kothyari UC, Kumar A (2010) Temporal variation of scour around circular bridge piers. ISH J Hydraul Eng 169(sup1):35–48

    Article  Google Scholar 

  • Kumar V, Raju KGR, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125(12):1302–1305

    Article  Google Scholar 

  • Larsen BE, Fuhrman DR, Sumer BM (2016) Simulation of wave-plus-current scour beneath submarine pipelines. J Waterw Port Coast Ocean Eng 142(5):4016003

    Article  Google Scholar 

  • Laursen EM, Toch A (1956) Scour around bridge piers and abutments. Iowa highway research board Ames, IA.

  • Li J, Zhang B, Shen C, Fu X, Li W (2021) Experimental study on local scour depth around Monopile foundation in combined waves and current. Sustainability 13(24):13614

    Article  Google Scholar 

  • Link O, Castillo C, Pizarro A, Rojas A, Ettmer B, Escauriaza C, Manfreda S (2017) A model of bridge pier scour during flood waves. J Hydraul Res 55(3):310–323

    Article  Google Scholar 

  • Liu W, Wang B, Guo Y, Zhang J, Chen Y (2020) Experimental investigation on the effects of bed slope and tailwater on dam-break flows. J Hydrol 590:125256. https://doi.org/10.1016/j.jhydrol.2020.125256

    Article  Google Scholar 

  • Mallory JK (2015) Abnormal Waves on the South East Coast of South Africa. Int Hydrogr Rev 51:105

    Google Scholar 

  • Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication.

  • Melville BW, Chiew Y-M (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125(1):59–65

    Article  Google Scholar 

  • Melville BW, Raudkivi AJ (1977) Flow characteristics in local scour at bridge piers. J Hydraul Res 15(4):373–380

    Article  Google Scholar 

  • Melville BW, Raudkivi AJ (1996) Effects of foundation geometry on bridge pier scour. J Hydraul Eng 122(4):203–209

    Article  Google Scholar 

  • Melville BW (1975) Local scour at bridge sites. Researchspace @ auckland

  • Mostafa YE, Agamy AF (2011) Scour around single pile and pile groups subjected to waves and currents. Int J Eng Sci Technol IJEST 3(11):8160–8178

    Google Scholar 

  • Nagata N, Hosoda T, Nakato T, Muramoto Y (2005) Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J Hydraul Eng 131(12):1074–1087

    Article  Google Scholar 

  • Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World scientific.

  • Nurtjahyo PY (2002) Numerical simulation of pier scour and contraction scour. Dept of Civ Eng, Ocean Eng Prog 15:15

    Google Scholar 

  • Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128(9):811–820

    Article  Google Scholar 

  • Olsen NRB, Kjellesvig HM (1998) Three-dimensional numerical flow modelling for estimation of maximum local scour depth. IAHR J Hydraul Res 36(4):579–590

    Article  Google Scholar 

  • Olsen NRB, Melaaen MC (1993) Three-dimensional calculation of scour around cylinders. J Hydraul Eng 119(9):1048–1054

    Article  Google Scholar 

  • Paik J, Sotiropoulos F, Porté-Agel F (2009) Detached eddy simulation of flow around two wall-mounted cubes in tandem. Int J Heat Fluid Flow 30(2):286–305. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.006

    Article  Google Scholar 

  • Park JH, Kim KH (2010) The local scour around a slender pile in combined waves and current. J Korean Soc Coast Ocean Eng 22(6):405–414

    Google Scholar 

  • Park C-W, Il PH, Cho Y-K (2017) Evaluation of the applicability of pier local scour formulae using laboratory and field data. Mar Georesources Geotechnol 35(1):1–7

    Article  Google Scholar 

  • Parker G, Toro-Escobar C, Voigt Jr RL (1998) Countermeasures to protect bridge piers from scour.

  • Peregrine DH (1976) Interaction of water waves and currents. Advances in applied mechanics. Elsevier, New Jersey, pp 9–117

    Google Scholar 

  • Petersen TU, Sumer BM, Fredsøe J (2012) Time scale of scour around a pile in combined waves and current. In: International Conference on Coastal Engineering. pp 30:08

  • Porter K, Simons R, Harris J, Ferradosa TF (2012) Scour development in complex sediment beds. Coast Eng 2:33

    Google Scholar 

  • Qi W-G, Gao F-P (2014a) Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast Eng 83:72–81

    Article  Google Scholar 

  • Qi W, Gao F (2014b) Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci China Technol Sci 57:1030–1039

    Article  Google Scholar 

  • Qi M, Li J, Chen Q (2016) Comparison of existing equations for local scour at bridge piers: parameter influence and validation. Nat Hazards 82(3):2089–2105

    Article  Google Scholar 

  • Qi W, Gao F, Han X, et al (2012) Local scour and pore-water pressure around a monopile foundation under combined waves and currents. In: The Twenty-second International Offshore and Polar Engineering Conference.

  • Quezada M, Tamburrino A, Niño Y (2019) Numerical study of the hydrodynamics of waves and currents and their effects in pier scouring. Water 11(11):2256

    Article  Google Scholar 

  • Raaijmakers T, Rudolph D (2008) Time-dependent scour development under combined current and Waves conditions-laboratory experiments with online monitoring technique. In: proceedings 4th international conference on scour and erosion (ICSE-4). 5: 7, 2008, Tokyo, Japan. 152–161.

  • Reeve D, Chadwick A, Fleming C (2018) Coastal engineering: processes, theory and design practice. CRC Press

    Google Scholar 

  • Richardson E V, Davis SR, others (2001) Evaluating scour at bridges.

  • Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540

    Article  Google Scholar 

  • Roelvink D (2011) A guide to modeling coastal morphology. Singapure, World scientific, pp 3–33

    Google Scholar 

  • Rooney DM, Machemehl JL (1977) Using suction to minimize sand-bed scour. J Hydraul Div 103(4):443–449

    Article  Google Scholar 

  • Roper AT, Schneider VR, Shen HW (1967) Analytical approach to local scour, pre-congress. Proc Pap 3:10–19

    Google Scholar 

  • Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pier. J Fluid Mech 534:351–401

    Article  Google Scholar 

  • Roulund A, Sutherland J, Todd D, Sterner J (2016) Parametric equations for Shields parameter and wave orbital velocity in combined current and irregular waves. 8 th international conference of scour and erosion. Taylor & Francis Group, Oxford, UK, pp 313–318

    Chapter  Google Scholar 

  • Salaheldin TM, Imran J, Chaudhry MH (2004) Numerical modeling of three-dimensional flow field around circular piers. J Hydraul Eng 130(2):91–100

    Article  Google Scholar 

  • Schendel A, Welzel M, Schlurmann T, Hsu T-W (2020) Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast Eng 161:103751

    Article  Google Scholar 

  • Shatanawi KM, Aziz NM, Khan AA (2008) Frequency of discharge causing abutment scour in South Carolina. J Hydraul Eng 134(10):1507–1512

    Article  Google Scholar 

  • Sheppard DM, Melville B, Demir H (2014) Evaluation of existing equations for local scour at bridge piers. J Hydraul Eng 140(1):14–23

    Article  Google Scholar 

  • Simarro G, Civeira S, Cardoso AH (2012) Influence of riprap apron shape on spill-through abutments. J Hydraul Res 50(1):138–141

    Article  Google Scholar 

  • Simons DB, Chen Y-H, Swenson LJ (1984) Hydraulic test to develop design criteria for the use of Reno mattresses. Rep Maccaferri 3:12

    Google Scholar 

  • Soltani-Gerdefaramarzi S, Afzalimehr H, Chiew Y-M, Gallichand J (2014) Reduction of pier scour using bed suction and jet injection. In: proceedings of the institution of civil engineers-water management. 105–114.

  • Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Oceanog Literat Rev 9(44):947

    Google Scholar 

  • Soulsby R (1997) Dynamics of marine sands. Oceanogr Literat Rev 9(44):947–1997

    Google Scholar 

  • Soulsby RL, Clarke S (2005) Bed shear-stress under combined waves and currents on smooth and rough beds (TR 137).

  • Sumer BM, Fredsøe J (1997) Scour at the head of a vertical-wall breakwater. Coast Eng 29(3–4):201–230

    Article  Google Scholar 

  • Sumer BM, Fredsøe J (2001) Scour around pile in combined waves and current. J Hydraul Eng 127(5):403–411

    Article  Google Scholar 

  • Sumer B, Fredsøe J, Christiansen N (1992a) Scour around vertical pile in waves. J Waterw Port, Coastal, Ocean Eng 118(1):15–31. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(15)

    Article  Google Scholar 

  • Sumer B, Christiansen N, Fredsøe J (1993) Influence of cross section on wave scour around piles. J Waterw Port, Coastal, Ocean Eng 119(5):477–495. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:5(477)

    Article  Google Scholar 

  • Sumer BM, Christiansen N, Fredsøe J (1997) The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J Fluid Mech 332:41–70

    Article  Google Scholar 

  • Sumer BM, Whitehouse RJS, Tørum A (2001) Scour around coastal structures: a summary of recent research. Coast Eng 44(2):153–190

    Article  Google Scholar 

  • Sumer BM, Hatipoglu F, Fredsøe J (2007) Wave scour around a pile in sand, medium dense, and dense silt. J Waterw Port, Coastal, Ocean Eng 133(1):14–27

    Article  Google Scholar 

  • Sumer BM, Petersen TU, Locatelli L et al (2013) Backfilling of a scour hole around a pile in waves and current. J Waterw Port, Coastal, Ocean Eng 139(1):9–23

    Article  Google Scholar 

  • Sumer BM, Fredsøe J, others (2002) Time scale of scour around a large vertical cylinder in waves. In: the twelfth international offshore and polar engineering conference.

  • Sumer BM, Christiansen N, Fredsoe J, others (1992b) Time scale of scour around a vertical pile. In: the second international offshore and polar engineering conference.

  • Tafarojnoruz A, Gaudio R, Dey S (2010) Flow-altering countermeasures against scour at bridge piers: a review. J Hydraul Res 48(4):441–452

    Article  Google Scholar 

  • Tanaka S, Yano M (1967) Local scour around a circular cylinder.

  • Tang Z, Melville B, Singhal N et al (2022) Countermeasures for local scour at offshore wind turbine monopile foundations: a review. Water Sci Eng 33:e101572

    Google Scholar 

  • Thomas GP, Klopman G (1997) Wave-current interactions in the near shore region. Int Ser Adv Fluid Mech 10:255–319

    Google Scholar 

  • Tison LJ (1940) Erosion autour des piles de ponts en riviere. In: Annales des Travaux publics de Belgique. pp 813–817

  • Tseng M-H, Yen C-L, Song CCS (2000) Computation of three-dimensional flow around square and circular piers. Int J Numer Methods Fluids 34(3):207–227

    Article  Google Scholar 

  • Umeda S (2011) Scour regime and scour depth around a pile in waves. J Coast Res 845–849

  • Unger J, Hager WH (2007) Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp Fluids 42(1):1–19

    Article  Google Scholar 

  • van Rijn LC (1984) Sediment transport, part II: suspended load transport. J Hydraul Eng 110:1613–1641

    Article  Google Scholar 

  • van Rijn LC (1984) Sediment Transport, Part I: Bed Load Transport. J Hydraul Eng 110(10):1431–1457

    Article  Google Scholar 

  • Wang J, Geng L, Ding L et al (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267:114902

    Article  Google Scholar 

  • Wang RK, Herbich JB (1983) Combined current and wave-produced scour around a single pile. Texas Engineering Experiment Station

  • Wilcox DC (1994) Turbulence Modeling for {CFD}. DCW Industries Inc, La Canada, California

    Google Scholar 

  • Wu W, Wang SS (2002) Prediction of local scour of non-cohesive sediment around bridge piers using FVM-based CCHE2D Model. In: first international conference on scour of foundations. November 17–20, 2002, College Station, USA. pp 1176–1180.

  • Yang Y, Melville BW, Macky GH, Shamseldin AY (2019) Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water 11(8):1530

    Article  Google Scholar 

  • Yang P, Li R, Pan L (2022) Effects of bed roughness on a horseshoe vortex in overland water flowing past a cylinder. J Hydrol 606:127385

    Article  Google Scholar 

  • Yin Z, Wang Y, Jia Q (2019) Hydrodynamic Characteristics of a Pneumatic Breakwater with Combined Wave-Current Actions: A Numerical Investigation. J Coast Res 36(1):196–203. https://doi.org/10.2112/JCOASTRES-D-18-00140.1

    Article  Google Scholar 

  • Younis MY, Zhang H, Hu B et al (2014) Investigation of different aspects of laminar horseshoe vortex system using PIV. J Mech Sci Technol 28(2):527–537

    Article  Google Scholar 

  • Zeng J, Constantinescu G., Weber L (2005) A fully 3d non- hydrostatic model for prediction of flow, sediment transport and bed morphology in open channels. In: n proceedings of the 31st IAHR Congress, pp 1327–1338.

  • Zhang W, Zapata MU, Bai X et al (2020) Three-dimensional simulation of horseshoe vortex and local scour around a vertical cylinder using an unstructured finite-volume technique. Int J Sediment Res 35(3):295–306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Edited by Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Afzal, M.S. A review of the state of research on bridge pier scour under combined action of waves and current. Acta Geophys. 71, 2359–2379 (2023). https://doi.org/10.1007/s11600-022-01001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-022-01001-4

Keywords

Navigation