Cai M, Brown ET (2017) Challenges in the mining and utilization of deep mineral resources. Engineering 3(4):432–433. https://doi.org/10.1016/J.ENG.2017.04.027
Article
Google Scholar
Dong Z, Sun Q, Zhang W, Xu C (2020) Thermal damage of granite after thermal shock cycle. Géotech Lett 10(2):168–173. https://doi.org/10.1680/jgele.19.00062
Article
Google Scholar
Ersoy H, Kolayli H, Karahan M, Karahan HH, Sunnetci MO (2019) Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures. Bull Eng Geol Env 78(3):1515–1525. https://doi.org/10.1007/s10064-017-1208-z
Article
Google Scholar
Fan LF, Gao JW, Du XL, Wu ZJ (2020) Spatial gradient distributions of thermal shock-induced damage to granite. J Rock Mech Geotech Eng 12(5):917–926. https://doi.org/10.1016/j.jrmge.2020.05.004
Article
Google Scholar
Gautam PK, Verma AK, Jha MK, Sharma P, Singh TN (2018) Effect of high temperature on physical and mechanical properties of Jalore granite. J Appl Geophys 159:460–474. https://doi.org/10.1016/j.jappgeo.2018.07.018
Article
Google Scholar
Ge ZL, Sun Q (2021) Acoustic emission characteristics of gabbro after microwave heating. Int J Rock Mech Min Sci 138:104616. https://doi.org/10.1016/j.ijrmms.2021.104616
Article
Google Scholar
Geng JS, Sun Q, Zhang YC, Zhang YL (2017) Analysis of thermally-induced transformations of silica rocks after high temperature heat treatment. Acta Geodyn et Geomater 14(3):187. https://doi.org/10.13168/AGG.2017.0016
Article
Google Scholar
Geng JS, Sun Q, Zhang YC, Chao LW, Lü C, Zhang YL (2018) Temperature dependence of the thermal diffusivity of sandstone. J Petrol Sci Eng 164:110–116. https://doi.org/10.1016/j.petrol.2018.01.047
Article
Google Scholar
Guo TK, Tang SJ, Liu S, Liu XQ, Zhang W, Qu GZ (2020) Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress. Eng Fract Mech 240:107350. https://doi.org/10.1016/j.engfracmech.2020.107350
Article
Google Scholar
Guo P, Wu SC, Zhang G, Chu CQ (2021) Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions. Int J Rock Mech Min Sci 144:104820. https://doi.org/10.1016/j.ijrmms.2021.104820
Article
Google Scholar
Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks: a review. Int J Rock Mech Min Sci Geomech Abstr 20(1):3–10. https://doi.org/10.1016/0148-9062(83)91609-1
Article
Google Scholar
Hu JJ, Sun Q, Pan XH (2018) Variation of mechanical properties of granite after high-temperature treatment. Arab J Geosci 11(2):43. https://doi.org/10.1007/s12517-018-3395-8
Article
Google Scholar
Hu JJ, Xie HP, Sun Q, Li CB, Liu GK (2021) Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int J Min Sci Technol 31(5):843–852
Article
Google Scholar
Junique T, Vazquez P, Benavente D, Thomachot-Schneider C, Geraud Y (2021) Experimental investigation of the effect of quenching cycles on the physico-chemical properties of granites. Geothermics 97:102235. https://doi.org/10.1016/j.geothermics.2021.102235
Article
Google Scholar
Leeb D (1979) Dynamic hardness testing of metallic materials. NDT International 12(6):274–278. https://doi.org/10.1016/0308-9126(79)90087-7
Article
Google Scholar
Liu XS, Lu WL, Li M, Zeng ND, Li T (2020) The thermal effect on the physical properties and corresponding permeability evolution of the heat-treated sandstones. Geofluids 2020:8838325. https://doi.org/10.1155/2020/8838325
Article
Google Scholar
Lv YX, Yuan C, Zhu XH, Wei P, Gan Q, Li HB (2021) Influence of permeability anisotropy on rock damage and heat transfer in geothermal reservoir. Arab J Geosci 14(13):1293. https://doi.org/10.1007/s12517-021-07705-z
Article
Google Scholar
Mahanta B, Singh TN, Ranjith PG (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114. https://doi.org/10.1016/j.enggeo.2016.06.008
Article
Google Scholar
Shen YJ, Hou X, Yuan JQ, Xu ZH, Hao JS, Gu LJ, Liu ZY (2020) Thermal deterioration of high-temperature granite after cooling shock: multiple-identification and damage mechanism. Bull Eng Geol Env 79(10):5385–5398. https://doi.org/10.1007/s10064-020-01888-7
Article
Google Scholar
Shen YJ, Yuan JQ, Hou X, Hao JS, Bai ZP, Li T (2021) The strength changes and failure modes of high-temperature granite subjected to cooling shocks. Geomech Geophys Geo-Energy Geo-Resour 7(1):23. https://doi.org/10.1007/s40948-020-00214-5
Article
Google Scholar
Sirdesai NN, Singh TN, Gamage RP (2017) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone-a comparative study. Eng Geol 226:208–220. https://doi.org/10.1016/j.enggeo.2017.06.010
Article
Google Scholar
Sun Q, Hu JJ (2021) Effects of heating on some physical properties of granite, Shandong China. J Appl Geophys 193:104410. https://doi.org/10.1016/j.jappgeo.2021.104410
Article
Google Scholar
Sun Q, Zhang WQ, Su TM, Zhu SY (2016) Variation of wave velocity and porosity of sandstone after high temperature heating. Acta Geophys 64(3):635–648
Article
Google Scholar
Sun H, Sun Q, Deng W, Zhang W, Lü C (2017) Temperature effect on microstructure and P-wave propagation in Linyi sandstone. Appl Therm Eng 115:913–922. https://doi.org/10.1016/j.applthermaleng.2017.01.026
Article
Google Scholar
Sun C, Jin CZ, Wang LG, Ao YH, Zhang JJ (2022) Creep damage characteristics and local fracture time effects of deep granite. Bull Eng Geol Env 2022:79. https://doi.org/10.1007/s10064-022-02578-2
Article
Google Scholar
Tian H, Kempka T, Xu NX, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45:1113–1117. https://doi.org/10.1007/s00603-012-0228-z
Article
Google Scholar
Vagnon F, Colombero C, Colombo F, Comina C, Ferrero AM, Mandrone G, Vinciguerr SC (2019) Effects of thermal treatment on physical and mechanical properties of Valdieri marble-NW Italy. Int J Rock Mech Min Sci 116:75–86. https://doi.org/10.1016/j.ijrmms.2019.03.006
Article
Google Scholar
Vagnon F, Colombero C, Comina C, Ferrero AM, Mandrone G, Missagia R, Vinciguerra SC (2021) Relating physical properties to temperature induced damage in carbonate rocks. Géotech Lett 11(2):147–157. https://doi.org/10.1680/jgele.20.00122
Article
Google Scholar
Viles HA (2012) Linking weathering and rock slope instability: non-linear perspectives. Earth Surf Proc Land 38(1):62–70. https://doi.org/10.1002/esp.3294
Article
Google Scholar
Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth, Parts a/b/c 28(9–11):499–509. https://doi.org/10.1016/S1474-7065(03)00069-X
Article
Google Scholar
Xu T, Zhou GL, Heap MJ, Zhu WC, Chen CF, Baud P (2017) The influence of temperature on time-dependent deformation and failure in granite: a mesoscale modeling approach. Rock Mech Rock Eng 50(9):2345–2364. https://doi.org/10.1007/s00603-017-1228-9
Article
Google Scholar
Yang DM, Sarhosis V, Sheng Y (2014) Thermal–mechanical modelling around the cavities of underground coal gasification. J Energy Inst 87:321–329. https://doi.org/10.1016/j.joei.2014.03.029
Article
Google Scholar
Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197. https://doi.org/10.1016/j.geothermics.2016.09.008
Article
Google Scholar
Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47(1):94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014
Article
Google Scholar
Yin TB, Zhuang DD, Li Q, Tan X, Wu Y (2021) Effect of oxygen on damage mechanism and mechanical properties of sandstone at high temperature. Bull Eng Geol Env 80(8):6047–6064. https://doi.org/10.1007/s10064-021-02317-z
Article
Google Scholar
Yu JD, Lee JB, Yoon HK (2021) Effects of rock weathering on guided wave propagation in rock bolts. Tunn Undergr Space Technol 115:104069. https://doi.org/10.1016/j.tust.2021.104069
Article
Google Scholar
Zhang Y, Zhang X, Zhao YS (2005) Process of sandstone thermal cracking. Chin J Geophys 48(3):656–659. https://doi.org/10.1002/cjg2.706
Article
Google Scholar
Zhang WQ, Sun Q, Hao SQ, Geng JS, Lv C (2016) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98(5):1297–1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010
Article
Google Scholar
Zhang WQ, Sun Q, Zhu SY, Hao SQ (2017) The effect of thermal damage on the electrical resistivity of sandstone. J Geophys Eng 14(2):255–261. https://doi.org/10.1088/1742-2140/aa5a22
Article
Google Scholar
Zhang YL, Zhao GF, Li Q (2020) Acoustic emission uncovers thermal damage evolution of rock. Int J Rock Mech Min Sci 132:104388. https://doi.org/10.1016/j.ijrmms.2020.104388
Article
Google Scholar
Zhang B, Tian H, Dou B, Zheng J, Chen J, Zhu ZN, Liu HW (2021a) Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles. Geothermics 93:102079. https://doi.org/10.1016/j.geothermics.2021.102079
Article
Google Scholar
Zhang WQ, Shi ZJ, Wang ZQ, Zhang ST (2021b) Identifying critical failure information of thermal damaged sandstone through acoustic emission signal. J Geophys Eng 18(4):558–566. https://doi.org/10.1093/jge/gxab035
Article
Google Scholar