Skip to main content

Spatio-temporal analysis of main seismic hazard parameters in the Ibero–Maghreb region using an Mw- homogenized catalog

Abstract

As a step toward probabilistic seismic hazard assessment in the Ibero–Maghreb region, this study focuses on the estimation and the analysis of main seismic hazard parameters, namely the magnitude of completeness mc, the occurrence rate λ, the Gutenberg–Richter b value, and the maximum expected magnitude Mmax. The most recent earthquake catalog database has been compiled using different earthquake sources, including historical and instrumental earthquake records covering the time period 1045 − 2019. International Seismological Centre catalog database has been used to get the preliminary instrumental catalog covering the study region. Then, a magnitude inter-scale conversion analysis has been carried out to obtain magnitude conversion empirical laws. These later have been used to compile a homogenized catalog with all magnitudes unified to the moment magnitude Mw scale, which is quite reliably linked to fault physical parameters. The completeness magnitude has been estimated for different time periods using the maximum curvature and the entire magnitude range methods. Subsequently, the spatio-temporal variation of the completeness magnitude has been studied to better appreciate regional data quality. This analysis resulted in three complete sub-catalogs corresponding to different magnitude of completeness, namely mc = 3.5, 4.5, and 5.5, starting from 1997, 1967 and 1959. The remaining seismic hazard parameters (λ, b and Mmax) were analyzed taking into account former magnitudes of completeness. Indeed, the use of incomplete data may add significant bias to seismic hazard parameters estimates. Main results are presented as spatial maps showing variation of seismic hazard parameters for different mc values. In particular, for the first time, a combined maximum magnitude–intensity map is elaborated and analyzed. The region corresponding to the largest maximum possible magnitude Mmax has been delimited as including Cheliff basin and its surrounding areas west of the capital city Algiers. Mmax hotspots with values exceeding 7 have been delimitated close to Lakhdaria and Boumerdes cities east of the capital Algiers. The corresponding hotspots include the epicenter of the 1910 Mw7 and the 2003 Mw6.8 Aumale and Zemmouri earthquakes, respectively. The magnitude of completeness mc has been found to decrease significantly during the last two decades, especially in the western part. The results obtained in this study can serve as a road map for future seismic hazard studies performed on the Ibero–Maghreb region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Aki K (1965) Maximum likelihood estimates of b in the formula log N=abM and its confidence limits. Bull Earthquake Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Algermissen ST, Perkins DM (1976) A probabilistic estimate of maximum acceleration in rock in the contiguous United States, USGS Open File Report 76–416, 45pp

  • Amaro-Mellado et al (2021) Generating a seismogenic source zone model for the Pyrenees: a GIS-assisted triclustering approach. Comput Geosci 150:104736. https://doi.org/10.1016/j.cageo.2021.104736

    Article  Google Scholar 

  • Ambraseys N, Vogt J (1988) Material for the investigation of the seismicity of the region of Algiers. Eur Earthq Eng 3:16–29

    Google Scholar 

  • Aoudia A, Meghraoui M (1995) Seismotectonic in the tell atlas of Algeria: the Cavaignac (Abou El Hassen) earthquake of 25.08.1922. Tectonophysics 248:263–276

    Article  Google Scholar 

  • Ayadi A, Bezzeghoud M (2015) Seismicity of Algeria from 1365 to 2013: maximum observed intensity map (MOI2014). Seismol Res Lett 86(1):236–244. https://doi.org/10.1785/0220140075

    Article  Google Scholar 

  • Beauval C, Hainzl S, Scherbaum F (2006a) Probabilistic seismic hazard estimation in low-seismicity regions considering non-Poissonian seismic occurrence. Geophy J Int 164:543–550. https://doi.org/10.1111/j.1365-246X.2006.02863.x

    Article  Google Scholar 

  • Beauval C, Scotti O, Bonilla F (2006b) The role of seismicity models in probabilistic seismic hazard estimation: comparison of a zoning and a smoothing approach. Geophys J Int 165:584–595

    Article  Google Scholar 

  • Bellalem F, Talbi A, Djellit H, Ymmel H, Mobarki M (2018) Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using parametric-historic procedure. J Seismol 22:897–908

    Article  Google Scholar 

  • Bender BK, Perkins DM (1983) Treatment of parameter uncertainty and variability for a single seismic hazard map. Earthq Spectra 9(2):165–194

    Article  Google Scholar 

  • Benouar D (1994) Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Ann Geophys XXXVI I(4):459–860

    Google Scholar 

  • Benouar D, Molas GL, Yamazaki F (1996) Earthquake hazard mapping in the Maghreb countries: Algeria, Morocco. Tunisia Earthq Eng Struct Dyn J 25(10):1151–1164

    Article  Google Scholar 

  • Bezzeghoud M, Ayadi A, Sebai A, Ait Messaoud A, Mokrane A, Benhallou H (1996) Seismicity of Algeria between 1365 and 1989: Map of Maximum observed intensities (MOI). Avances en Geofisica y Geodesia, 1, Ministerio de Obras Publicas, Transportes y Medio Ambiante. Instituto Geografico National España 107–114

  • Boudiaf A (1996) Étude sismotectonique de la région d’Alger et de la Kabylie (Algérie): utilisation des modèles numériques de terrain (mnt) et de la télédétection pour la reconnaissance des structures tectoniques actives: contribution à l’évaluation de l’aléa sismique. Université des Sciences de Montpellier (In French), Thèse de Doctorat

    Google Scholar 

  • Boughacha MS, Ouyed M, Ayadi A, Benhallou H (2004) Seismicity and seismic hazard mapping of northern Algeria: map of maximum calculated intensities (MCI). J Seismol 8:1–10

    Article  Google Scholar 

  • Buforn E et al (2017) The 2016 south Alboran earthquake (Mw = 6.4): a reactivation of the Ibero-Maghrebian region? Tectonophysics 712–713:704–715. https://doi.org/10.1016/j.tecto.2017.06.033

    Article  Google Scholar 

  • Cabanas L et al (2015) Relationships between Mw and other earthquake size parameters in the Spanish IGN seismic catalog. Pure Appl Geophys 172(9):2397–2410

    Article  Google Scholar 

  • Camelbeeck T, Meghraoui M (1998) Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophys J Int 132(2):347–362. https://doi.org/10.1046/j.1365-246x.1998.00428.x

    Article  Google Scholar 

  • Cherkaoui T (2007) Le réseau sismologique du département de physique du globe: 1937–2007. Edt. Institut scientifique, Rabat, Maroc. https://doi.org/10.13140/2.1.1308.0320

  • Clague J (1997) Evidence for large earthquakes at the Cascadia Subduction Zone. Rev Geophys 35(4):439–460

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Article  Google Scholar 

  • Cover TM, Hart PE (1967) Nearest neighbor Pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  • De Santis A, Cianchini G, Favali P, Beranzoli L, Boschi E (2011) The Gutenberg-Richter law and entropy of earthquakes: two case studies in central Italy. Bull Seismol Soc Am 101(3):1386–1395

    Article  Google Scholar 

  • Deniz A, Yucemen MS (2010) Magnitude conversion problem for the Turkish earthquake data. Nat Hazards 55:333–352. https://doi.org/10.1007/s11069-010-9531-8

    Article  Google Scholar 

  • Dieterich J (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res 99:2601–2618

    Article  Google Scholar 

  • Domzig A et al (2006) Searching for the Africa-Eurasia Miocene boundary onshore western Algeria (Maradja’03 cruise). C R Geosci 338:80–91

    Article  Google Scholar 

  • Eroğlu Azak T, Kalafat D, Şeşetyan K, Demircioğlu MB (2018) Effects of seismic declustering on seismic hazard assessment: a sensitivity study using the Turkish earthquake catalogue. Bull Earthquake Eng (online) 16(8):3339–3366. https://doi.org/10.1007/s10518-017-0174-y

    Article  Google Scholar 

  • Faenza L, Hainzl S, Scherbaum F, Beauval C (2007) Statistical analysis of time-dependent earthquake occurrence and its impact on hazard in the low seismicity region Lower Rhine Embayment. Geophys J Int 171(2):797–806. https://doi.org/10.1111/j.1365-246X.2007.03564.x

    Article  Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-Mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16:535–570

    Article  Google Scholar 

  • Guiraud R (1977) Sur la néotectonique des régions ouest–constantinoises. Bulletin De La Société Géologique De France S7-XIX(3):645–650 (In French)

    Article  Google Scholar 

  • Gulia L, Wiemer S (2019) Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574:193–200

    Article  Google Scholar 

  • Gulia L, Tormann T, Wiemer S, Herrmann M, Seif S (2016) Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophys Res Lett 43:1100–1108

    Article  Google Scholar 

  • Gutenberg B (1956) The energy of earthquakes. Q J Geol Sot London 112:1–14

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth. Second Princeton Univ Pres, Princeton New Jersey, p 308

    Google Scholar 

  • Hamdache M (1998) Seismic hazard assessment for the main seismogenic zones in north Algeria. Pure Appl Geophy 152:281–314

    Article  Google Scholar 

  • Hamdache M, Bezzeghoud M, Mokrane A (1998) Estimation of seismic hazard parameters in the northern part of Algeria. Pure Appl Geophys 151:101–117

    Article  Google Scholar 

  • Hamdache M, Peláez JA, Talbi A, Casado CL (2010) A unified catalog of main earthquakes for northern Algeria from A.D. 856 to 2008. Seismol Res Lett 81(5):732–739

    Article  Google Scholar 

  • Hamdache M, Peláez JA, Talbi A, Mobarki M, Casado CL (2012) Ground–motion hazard values for Northern Algeria. Pure Appl Geophys 169:711–723

    Article  Google Scholar 

  • Hamdache M, Henares J, Pelaez JA, Damerdji Y (2018) Fractal analysis of earthquake sequences in the Ibero-Maghrebian region. Pure Appl Geophys 176(4):1397–1416

    Article  Google Scholar 

  • Hamidatou M et al (2021) Seismic hazard analysis of surface level using topographic condition in the northeast of Algeria. Pure Appl Geophys 178(3):823–846

    Article  Google Scholar 

  • Hamlaoui M, Vanneste K, Baddari K, Louail L, Vleminckx B, Demdoum A (2017) Probabilistic seismic hazard assessment in the northeastern part of Algeria. Arab J Geosci 10(11):1–14

    Article  Google Scholar 

  • Harbi A, Benouar D, Benhallou H (2003a) Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria Part I: review of historical seismicity. J Seismol 7:115–136

    Article  Google Scholar 

  • Harbi A, Maouche S, Benhallou H (2003b) Re–appraisal of seismicity and seismotectonics in the north–eastern Algeria Part II: 20th century seismicity and seismotectonics analysis. J Seismol 7:221–234

    Article  Google Scholar 

  • Hée A (1950) Catalogue des séismes Algériens de 1850 à 1911. Annales De L’institut De Physique Du Globe De Strasbourg 6:41–49 ((in French))

    Google Scholar 

  • Horst AE, Streig AR, Wells RE, Bershaw J (2020) Multiple Holocene earthquakes on the gales creek fault, northwest Oregon fore-arc. Bull Seismol Soc Am 111(1):476–489. https://doi.org/10.1785/0120190291

    Article  Google Scholar 

  • Jiménez MJ, García-Fernández M, GSHAP Ibero-Maghreb working group (1999) Seismic hazard assessment in the Ibero-Maghreb region. Ann Geofis 42(6):1057–1066

    Google Scholar 

  • Jiménez MJ, Giardini D, Grünthal G, sesame working group (2001) Unified seismic hazard modelling throughout the Mediterranean Region. Bollettino Di Geofisica Teorica Ed Applicata 42(1–2):3–18

    Google Scholar 

  • Kadirioglu FT, Kartal RF (2016) The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish J Earh Sci 25:300–310

    Article  Google Scholar 

  • Kariche J, Meghraoui M, Ayadi A, Boughacha MS (2017) Stress change and fault interaction from a two century-long earthquake sequence in the central tell atlas, Algeria Stress change and fault interaction from a two century-long earthquake sequence. Bull Seismol Soc Am 107:2624–2635

    Article  Google Scholar 

  • Kherroubi A et al (2009) Recent and active deformation pattern off the easternmost Algerian margin Western Mediterranean Sea: new evidence for contractional tectonic reactivation. Mar Geol 261:17–32

    Article  Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude Mmax. Pure Appl Geophys 161:1–27

    Article  Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59:674–700

    Article  Google Scholar 

  • Kijko A, Lasocki S, Graham G (2001) Non-parametric seismic hazard in mines. Pure Appl Geophys 158:1655–1675

    Article  Google Scholar 

  • Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files Part III Incorporation of uncertainty of earthquake–occurrence model. Bull Seismol Soc Am 106(3):1210–1222

    Article  Google Scholar 

  • Komut T, Karabudak E (2021) Paleo-earthquake evidence and earthquake recurrence for Düzce fault. Turkey J Seismol 25(9):803–823. https://doi.org/10.1007/s10950-021-10002-7

    Article  Google Scholar 

  • Luen B, Stark PB (2012) Poisson tests of declustered catalogues. Geophys J Int 189:691–700

    Article  Google Scholar 

  • Marzocchi W, Taroni M (2014) Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 104(4):1838–1845. https://doi.org/10.1785/0120130300

    Article  Google Scholar 

  • Marzocchi W, Spassiani I, Stallone A, Taroni M (2020) How to be fooled searching for significant variations of the b-value. Geophys J Int 220(3):1845–1856. https://doi.org/10.1093/gji/ggz541

    Article  Google Scholar 

  • Masana E et al (2018) First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): los trances site. Geol Acta 16(4):461–476. https://doi.org/10.1344/GeologicaActa2018.16.4.8

    Article  Google Scholar 

  • McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85(1):275–284

    Google Scholar 

  • McGuire RK (1976) FORTRAN computer program for seismic risk analysis. US Geological Survey Open–File Report 76–67

  • McGuire RK (1978) Fortran computer for seismic risk analysis using faults as earthquake sources, U.S. Geological Survey, Open File Report 78–1007

  • Meghraoui M, Cisternas A, Philip H (1986) Seismo tectonics of the lower Chéliff basin: structural background of the El Asnam (Algeria) earthquake. Tectonics 5(6):809–836

    Article  Google Scholar 

  • Meghraoui M (1988) Géologie des zones sismiques du nord de l’Algérie paléosismologie tectonique active et synthèse sismotectonique. PhD Thesis, Université de Paris XI Centre d'Orsay (France), 356pp (in French)

  • Mejri L (2012) Tectonique quaternaire, paleosismicité et sources sismogénique en Tunisie Nord-orientale : étude de la faille d’Utique. Université Toulouse III, Paul Sabatier/Université Tunis El Manar, Thèse de Doctorat (In French)

  • Mokrane A, Ait Messaoud A, Sébaï A, Menia A, Ayadi A, Bezzeghoud A, Benhallou H (1994) Les séismes en Algérie de 1365 à 1992 Centre de Recherche en Astronomie Astrophysique et Géophysique (Département : Etudes et Surveillance Sismique), Algiers, Algeria 277 pp (In French)

  • Mortgat CP, Shah HC (1978) Seismic hazard analysis of Algeria: technical report the John A Blume earthquake engineering center department of civil engineering. Stanford University, Stanford

    Google Scholar 

  • Mourabit T, Abou Elenean KM, Ayadi A et al (2014) Neo-deterministic seismic hazard assessment in North Africa. J Seismol 18:301–318

    Article  Google Scholar 

  • Mueller CS (2010) The influence of maximum magnitude on seismic hazard estimates in the central and eastern United States. Bull Seismol Soc Am 100(2):699–711

    Article  Google Scholar 

  • Nanjo K, Yoshida A (2018) A b map implying the first eastern rupture of the Nankai Trough earthquakes. Nat Commun 9:1117. https://doi.org/10.1038/s41467-018-03514-3

    Article  Google Scholar 

  • Nanjo K, Hirata N, Obara K, Kasahara K (2012) Decade–scale decrease in b-value prior to the M9–class 2011 Tohoku and 2004 Sumatra quakes. Geophys Res Lett. https://doi.org/10.1029/2012GL052997

    Article  Google Scholar 

  • Patrick E, Fischer F (1970) A generalized k-nearest neighbor rule. Inf Control 16:128–152

    Article  Google Scholar 

  • Peláez JA, Hamdache M, Casado CL (2003) Seismic hazard in northern Algeria using spatially smoothed seismicity. Tectonophysics 372:105–119

    Article  Google Scholar 

  • Peláez JA, Hamdache M, Casado CL (2005) Updating the probabilistic seismic hazard values of Northern Algeria with the 21 May 2003 M 6.8 Algiers earthquake included. Pure Appl Geophys 162:2163–2177

    Article  Google Scholar 

  • Peláez JA et al (2007) A catalogue of main Moroccan earthquakes from 1045 to 2005. Seismol Res Lett 78:614–621

    Article  Google Scholar 

  • Pisarenko VF (1991) Statistical evaluation of maximum possible earthquake. Phys Solid Earth 27:757–776

    Google Scholar 

  • Pisarenko VF, Lyubushin A, Lysenko VB, Golubeva TV (1996) Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. Bull Seismol Soc Am 86:691–700

    Article  Google Scholar 

  • Poggi V, Garcia-Peláez J, Syron R, Pagani M, Gee R (2020) A probabilistic seismic hazard model for North Africa. Bull Earthquake Eng 18:2917–2951

    Article  Google Scholar 

  • Popandopoulos GA, Baskoutas I, Chatziioannou E (2016) The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg-Richter law b-value parameter using the earthquake catalog of Greece. Izvestiya Phys Solid Earth 52(2):195–209

    Article  Google Scholar 

  • Poujol A et al (2004) Active tectonics of the Northern Rif (Morocco) from geo–morphic and geochronological data. J Geodyn 77:70–88

    Article  Google Scholar 

  • Reiter L (1990) Earthquake hazard analysis Issues and Insights. Columbia University Press, New York, p 254 (ISBN 0–231–06534–5)

    Google Scholar 

  • Rothé JP (1950) Les séismes de Kherrata et la sismicité de l’Algérie, Bulletin du Service de la Carte Géologique de l’Algérie, 4e série Géophysique, Vol. 3, Mende, France, pp 40

  • Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self–similarity. Nature 337:251–253

    Article  Google Scholar 

  • Scholz CH (1968) The frequency–magnitude relation of micro–fracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Article  Google Scholar 

  • Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett 42:1399–1402

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variation of earthquake–size distribution across different stress regimes. Nature 437:539–542

    Article  Google Scholar 

  • Sebrier M et al (2006) Some recent developments on the Maghreb geodynamics. Comptes Rendus Géosciences 338(1–2):65–79

    Article  Google Scholar 

  • Shi Y, Bolt BA (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72(5):1677–1687

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Google Scholar 

  • Smith WD (1981) The b-value as an earthquake precursor. Nature 289:136–139

    Article  Google Scholar 

  • Soumaya A et al (2016) Seismotectonic and seismic Hazard map of Tunisia. Geophysical Research Abstracts 18, The EGU 2016, 8266

  • Talbi A, Yamazaki F (2009) A mixed model for earthquake interevent times. J Seismol 14(2):289–307

    Article  Google Scholar 

  • Talbi A, Nanjo K, Zhuang J, Hamdache M (2013) Comparison of seismicity declustering methods using a probabilistic measure of clustering. J Seismol 17:1041–1061

    Article  Google Scholar 

  • Taroni M, Akinci A (2021) Good practices in PSHA: declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophys J Int 224(2):1174–1187. https://doi.org/10.1093/gji/ggaa462

    Article  Google Scholar 

  • Toda S (2020) Paleoseismology. In: Gupta H (ed) Encyclopedia of solid earth geophysics encyclopedia of earth sciences series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_9-1

    Chapter  Google Scholar 

  • Utsu T (2002) Relationships between magnitude scales. Int Handbook Earthquake Eng Seismol 81:733–746

    Article  Google Scholar 

  • Van der Woerd J et al (2014) The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence. J Geodyn 77:89–109

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude rupture length rupture width rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wheeler RL (2009) Methods of Mmax estimation east of the Rocky Mountains. Open–File Report 2009. U S Geological Survey pp 44

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska the Western United States and Japan. Bull Seismol Soc Am 90(4):859–869

    Article  Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698

    Article  Google Scholar 

  • Yelles-Chaouche A et al (2013) The new Algerian Digital Seismic Network (ADSN): towards an earthquake early-warning system. Adv Geosci 36:31–38

    Article  Google Scholar 

  • Yelles-Chaouche A et al (2017) The large Algerian earthquakes (267 A.D.-2017). Física De La Tierra. https://doi.org/10.5209/FITE.57617

    Article  Google Scholar 

  • Zöller G, Holschneider M (2016) The earthquake history in a fault zone tells us almost nothing about mmax. Seismol Res Lett 87(1):132–137. https://doi.org/10.1785/0220150176

    Article  Google Scholar 

  • Zöller G, Holschneider M, Hainzl S (2013) The maximum earthquake magnitude in a time horizon: theory and case studies. Bull Seismol Soc Am 103(2A):860–875. https://doi.org/10.1785/0120120013

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the International Seismological Centre (ISC) and the Instituto Geogràfico National (IGN) for making available earthquake data used in this study. This research work benefited from kind discussions with our colleagues in CRAAG in particular Pr. Abdelhakim Ayadi. Many thanks to our colleagues Farida Oussadou and Sofiane Gharbi for their participation in the elaboration of the seismo–tectonic database used to map main faults. Our thanks go also to Andrzej Kijko for his help in the discussion of the Mmax estimation methodology. The authors thanks two anonymous reviewers and the Editor for their valuable comments that improved an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Mobarki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Edited by Dr. Aybige Akinci (ASSOCIATE EDITOR) / Prof. Ramon Zuñiga (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mobarki, M., Talbi, A. Spatio-temporal analysis of main seismic hazard parameters in the Ibero–Maghreb region using an Mw- homogenized catalog. Acta Geophys. 70, 979–1001 (2022). https://doi.org/10.1007/s11600-022-00768-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-022-00768-w

Keywords

  • Earthquake hazards
  • Spatial analysis
  • Probability distributions
  • Hotspots
  • Earthquake dynamics