Skip to main content

Flood risk analysis based on nested copula structure in Armand Basin, Iran

Abstract

Merging different flood characteristics in a distribution function is provided by copula structures. In this study, the nested copula structure was used to construct a trivariate distribution of flood duration (D), peak (P), and volume (V). The required data were obtained by screening the flood events recorded at Armand Gauging Station, Iran. The characteristics of selected 63 flood events (1993–2018) were extracted and the best marginal distribution function of each was determined by Kolmogorov–Smirnov test. Then the fitness of six different copula functions (Frank, Clayton, Joe, Gumbel–Hougaard, Gaussian and Student’s t were examined for creating the joint distribution function. The best fitted marginal distribution is Johnson SB, for flood duration, and Lognormal (3p), for flood peak and flood volume. The best-fitted function for creating bivariate and trivariate distributions of flood characteristics in Armand Basin is Frank copula. In the next phase, the bivariate and trivariate joint return periods (at two states of AND, OR), Kendall return period and conditional return periods were calculated. The results revealed that the conditional return period of one flood variable given two other flood variables is greater than the corresponding values for the conditional return period of two flood variables given the third flood variable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abdi A, Hassanzadeh Y, Talatahari S et al (2017) Parameter estimation of copula functions using an optimization-based method. Theor Appl Climatol 129:21–32

    Article  Google Scholar 

  • Abdollahi S, Akhoond-Ali AM, Mirabbasi R, Adamowski JF (2019) Probabilistic event based rainfall-runoff modeling using copula functions. Water Resour Manag 33:3799–3814

    Article  Google Scholar 

  • Ahmadi F, Radmanesh F, Sharifi MR, Mirabbasi R (2018) Bivariate frequency analysis of low flow using copula functions (Case study: Dez River Basin, Iran). Environ Earth Sci. https://doi.org/10.1007/s12665-018-7819-2

    Article  Google Scholar 

  • Amarasinghe U, Amarnath G, Alahacoon N, Ghosh S (2020) How do floods and drought impact economic growth and human development at the sub-national level in India? Climate 8(11):123

    Article  Google Scholar 

  • Ashkar F, Rousselle J (1981) Design discharge as a random variable: a risk study. Water Resour Res 17:577–591. https://doi.org/10.1029/WR017i003p00577

    Article  Google Scholar 

  • Ayantobo OO, Li Y, Song S (2019) Multivariate drought frequency analysis using four-variate symmetric and asymmetric Archimedean copula functions. Water Resour Manag 33:103–127

    Article  Google Scholar 

  • Bacchi B, Becciu G, Kottegoda NT (1994) Bivariate exponential model applied to intensities and duration of extreme rainfall. J Hydrol 155:225–236

    Article  Google Scholar 

  • Bezak N, Mikoš M, Šraj M (2014) Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas. Water Resour Manag 28:2195–2212

    Article  Google Scholar 

  • Chowdhary H, Singh (2009) Copula Approach for Reducing Uncertainty in Design Flood Estimates in Insufficient Data Situations. In: World Environmental and Water Resources Congress 2009: Great Rivers © 2009 ASCE 4679. pp 4679–4688

  • De Martonne E (1926) Aréisme et indice artidite. Comptes Rendus de l’Académie Des Sciences. Paris 182:1395–1398

    Google Scholar 

  • Fan Y (2015) Uncertainty quantification of hydrologic predictions and risk analysis. 328

  • Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 111:341–360. https://doi.org/10.1007/s00704-012-0664-4

    Article  Google Scholar 

  • Gao Y, Wang D, Zhang Z et al (2018) Analysis of flood risk of urban agglomeration polders using multivariate copula. Water 10:1470. https://doi.org/10.3390/w10101470

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88:1034–1043

    Article  Google Scholar 

  • Gr̈aler B, Van Den Berg MJ, Vandenberghe S, et al (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 17:1281–1296https://doi.org/10.5194/hess-17-1281-2013

  • Guégan D, Hassani BK (2019) Risk measurement. Springer

    Book  Google Scholar 

  • Guo A, Chang J, Wang Y et al (2017) Maximum entropy-copula method for hydrological risk analysis under uncertainty: a case study on the Loess Plateau, China. Entropy. https://doi.org/10.3390/e19110609

    Article  Google Scholar 

  • Honarbakhsh A, Chogan M, Zare Bidaki R, Pazhuhesh M (2019) Regional frequency analysis of low flow in parts of the northern Karun river basin in chaharmahal and Bakhtiari province. Environ Water Eng 4(4):274–285

    Google Scholar 

  • Jiang C, Xiong L, Yan L et al (2019) Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice. Hydrol Earth Syst Sci 23:1683–1704

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press

    Book  Google Scholar 

  • Kristanovic PF, Singh VP (1987) A multivariate stochastic flood analysis using entropy. In: International Symposium on Flood Frequency and Risk Analyses. pp 515–540

  • Latif S, Mustafa F (2020) Trivariate distribution modelling of flood characteristics using copula function—a case study for Kelantan River basin in Malaysia. AIMS Geosci 6:92–130. https://doi.org/10.3934/geosci.2020007

    Article  Google Scholar 

  • Markiewicz I, Strupczewski WG, Kochanek K (2010) On accuracy of upper quantiles estimation. Hydrol Earth Syst Sci 14(11):2167–2175. https://doi.org/10.5194/hess-14-2167-2010

    Article  Google Scholar 

  • Mitková VB, Halmová D (2014) Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava. J Hydrol Hydromech 62:186–196. https://doi.org/10.2478/johh-2014-0026

    Article  Google Scholar 

  • Mohammdpour O, Hassanzadeh Y, Khodadadi A, Saghafian B (2017) Probabilistic risk analysis of flood events using trivariate copulas. J Civ Environ Eng 46:63–75

    Google Scholar 

  • Mohd Lokoman R, Yusof F (2019) Parametric estimation methods for bivariate copula in rainfall application. J Teknol 81:1–10. https://doi.org/10.11113/jt.v81.12059

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nazeri Tahroudi M, Ramezani Y, De Michele C, Mirabbasi R (2021) Multivariate analysis of rainfall and its deficiency signatures using Vine Copulas. Int J Clim. https://doi.org/10.1002/joc.7349

    Article  Google Scholar 

  • Nazeri Tahroudi M, Ramezani Y, De Michele C, Mirabbasi R (2022) Bivariate simulation of potential evapotranspiration using Copula-GARCH model. Water Resour Manage. https://doi.org/10.1007/s11269-022-03065-9

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer

    Google Scholar 

  • Renard B, Lang M (2007) Use of a gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour 30:897–912. https://doi.org/10.1016/j.advwatres.2006.08.001

    Article  Google Scholar 

  • Rizwan M, Guo S, Yin J, Xiong F (2019) Deriving design flood hydrographs based on copula function: a case study in Pakistan. Water (switzerl). https://doi.org/10.3390/w11081531

    Article  Google Scholar 

  • Saad C, El Adlouni S, St-Hilaire A, Gachon P (2015) A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Québec, Canada) record flood. Stoch Environ Res Risk Assess 29:275–294

    Article  Google Scholar 

  • Sackl B, Bergmann H (1987) A Bivariate flood model and its application. In: International Symposium on Flood Frequency and Risk Analyses. pp 571–582

  • Salleh N, Yusof F, Yusop Z (2016) Bivariate copulas functions for flood frequency analysis. In: AIP Conference Proceedings

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40:1–17. https://doi.org/10.1029/2004WR003133

    Article  Google Scholar 

  • Sandoval CE, Raynal-Villaseñor J (2008) Trivariate generalized extreme value distribution in flood frequency analysis. Hydrol Sci J 53:550–567. https://doi.org/10.1623/hysj.53.3.550

    Article  Google Scholar 

  • Schweizer B, Wolff EF (1981) On nonparamentric measures of dependence for random variables. Ann Stat 9:879–885

    Article  Google Scholar 

  • Serinaldi F, Grimaldi S (2007) Fully nested 3-Copula: procedure and application on hydrological data. J Hydrol Eng 12(4):420–430

    Article  Google Scholar 

  • Shafaei M, Fakheri-Fard A, Dinpashoh Y et al (2017) Modeling flood event characteristics using D-vine structures. Theor Appl Climatol 130:713–724. https://doi.org/10.1007/s00704-016-1911-x

    Article  Google Scholar 

  • Sharifi A, Dinpashoh Y, Mirabbasi R (2017) Daily runoff prediction using the linear and non-linear models. Water Sci Technol 76:793–805

    Article  Google Scholar 

  • Sraj M, Bezak N, Brilly M (2015) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process 29:225–238. https://doi.org/10.1002/hyp.10145

    Article  Google Scholar 

  • Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. Handb Hydrol 18:1

    Google Scholar 

  • Todorovic P (1978) Stochastic models of floods. Water Resour Res 14:345–356

    Article  Google Scholar 

  • Xu Y, Huang G, Fan Y (2017) Multivariate flood risk analysis for Wei River. Stoch Environ Res Risk Assess 31:225–242. https://doi.org/10.1007/s00477-015-1196-0

    Article  Google Scholar 

  • Yue S, Ouarda TBMJ, Bobée B et al (1999) The Gumbel mixed model for flood frequency analysis. J Hydrol 226:88–100. https://doi.org/10.1016/S0022-1694(99)00168-7

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J Hydrol Eng 12:431–439

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Regional Water Company of Chaharmahal and Bakhtiari for providing the required data and Shahrekord University for their support.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafat Zare Bidaki.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Edited by Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amini, S., Bidaki, R.Z., Mirabbasi, R. et al. Flood risk analysis based on nested copula structure in Armand Basin, Iran. Acta Geophys. 70, 1385–1399 (2022). https://doi.org/10.1007/s11600-022-00766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-022-00766-y

Keywords

  • Copula
  • Nested structure
  • Joint distribution
  • Multivariate flood analysis
  • Marginal distribution
  • Armand Basin