Skip to main content

Second-order approximate reflection coefficients of vertical transversely isotropic thin beds

Abstract

Due to the periodicity and rhythmicity of sedimentation, short-term cycles are commonly developed in sedimentary strata. Under the assumption of a long seismic wavelength, such strata can be regarded as a seismic single thin bed with vertical transversely isotropic (VTI) characteristics. A thin interbed can be formed by the stacking of a series of isotropic and VTI single thin beds. In seismic inversion, the interference of multiples and mode-converted waves generated within and between thin beds and transmission losses are ignored. These interferences are hardly addressed in seismic data processing due to being submerged in first arrivals. In this work, to thin interbeds of isotropic and VTI single thin beds, we propose second-order approximations of Kennett reflection coefficients for PP-, SP-, PS-, and SS-waves, which consider the internal and interlayer wave propagation effects. The numerical analyses show that the proposed approximations are of high accuracy when the P-wave impedance difference in the VTI single thin bed is from − 40 to 100% and of strong anisotropy. The proposed approximations can be used for the efficient and accurate simulation of the wavefields of media with thin interbedding, bringing great potential for the studies of the inversion methods for the internal property parameters of thin interbeds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  • Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67(11):4427–4440

    Article  Google Scholar 

  • Carcione JM, Kosloff D, Behle A (1991) Long-wave anisotropy in stratified media: a numerical test. Geophysics 56(2):245–254

    Article  Google Scholar 

  • Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581

    Article  Google Scholar 

  • Christopher J, Roger Y (1993) Implications of thin layers for amplitude variation with offset (AVO) studies. Geophysics 58(8):1200–1204

    Article  Google Scholar 

  • Foster DJ, Lane FD, Zhao ZY (2017) A systematic approach for quantifying wave propagation in vertically inhomogeneous media. Geophys J Int 210(2):706–730

    Article  Google Scholar 

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39(6):770–780

    Article  Google Scholar 

  • Graebner M (1992) Plane-wave reflection and transmission coefficients for a transversely isotropic solid. Geophysics 57(11):1512–1519

    Article  Google Scholar 

  • Imhof MG (2003) Scale dependence of reflection and transmission coefficients. Geophysics 68(1):322–336

    Article  Google Scholar 

  • Kennett BLN (1974) Reflections, rays, and reverberations. Bull Seismol Soc Am 64(6):1685–1696

    Article  Google Scholar 

  • Kennett BLN (1983) Seismic wave propagation in stratified media. Cambridge University Press, Cambridge

    Google Scholar 

  • Kennett BLN, Kerry NJ (1979) Seismic waves in a stratified half space. Geophys J Int 57(3):557–583

    Article  Google Scholar 

  • Liu YB, Schmitt DR (2003) Amplitude and AVO responses of a single thin bed. Geophysics 68(4):1161–1168

    Article  Google Scholar 

  • Meissner R, Meixner E (1969) Deformation of seismic wavelets by thin layers and layered boundaries. Geophys Prospect 17(1):1–27

    Article  Google Scholar 

  • Pan W, Kristopher A (2013) AVO/AVF analysis of thin-bed in elastic media. In: 83rd Annual International Meeting, SEG, Expanded Abstracts, pp 373–377

  • Postma GW (1955) Wave propagation in a stratified medium. Geophysics 20(4):780–806

    Article  Google Scholar 

  • Rüger A (2002) Reflection coefficients and azimuthal AVO analysis in anisotropic media. Society of Exploration Geophysics, Houston

    Book  Google Scholar 

  • Schoenberg M, Protázio J (1992) “Zoeppritz” rationalized and generalized to anisotropy. J Seism Explor 1(2):125–144

    Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954

    Article  Google Scholar 

  • Treitel S, Robinson EA (1966) Seismic wave propagation in layered media in terms of communication theory. Geophysics 31(1):17–32

    Article  Google Scholar 

  • Wang Y, Yang C, Lu J (2018) Dilemma faced by elastic wave inversion in thinly layered media. Chin J Geophys 61(3):1118–1135

    Google Scholar 

  • Werner U, Shapiro SA (1998) Intrinsic anisotropy and thin multilayering-two anisotropy effects combined. Geophys J Int 132(2):363–373

    Article  Google Scholar 

  • Yang Z, Lu J (2020) Second-order approximation of the seismic reflection coefficient in thin interbeds. Energies 13(6):1465

    Article  Google Scholar 

  • Yang C, Wang Y, Wang Y (2016) Reflection and transmission coefficients of a thin bed. Geophysics 81(5):N31–N39

    Article  Google Scholar 

  • Yuan SY, Wang SX, Ma M, Ji YZ, Deng L (2017) Sparse bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote Sens 55(11):6182–6194

    Article  Google Scholar 

Download references

Funding

This work was supported the National Natural Science Foundation of China (U1839208) and the support of the Research and Development Funds of Sinopec (P21066-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Edited by Prof. Sanyi Yuan (ASSOCIATE EDITOR) / Prof. Michał Malinowski (CO-EDITOR-IN-CHIEF).

Appendices

Appendix 1: Kennett equations and the second-order approximation for isotropic media

Fig. 13
figure 13

Multilayered media

As shown in Fig. 13, for an isotropic layered model with m interfaces, Kennett (1983) proposed the equations of reflectivity method for calculating the total reflection coefficients at Interface n:

$${\hat{\mathbf{R}}}_{{\text{D}}}^{(n)} = {\mathbf{R}}_{{\text{D}}}^{(n)} + {\mathbf{T}}_{{\text{U}}}^{(n)} {\dot{\mathbf{R}}}_{{\text{D}}}^{(n - 1)} [{\mathbf{I}} - {\mathbf{R}}_{{\text{U}}}^{(n)} {\dot{\mathbf{R}}}_{{\text{D}}}^{(n - 1)} ]^{ - 1} {\mathbf{T}}_{{\text{D}}}^{(n)} , \, n \in [2,m],$$
(22)

where \({\mathbf{R}}_{{\text{D}}}^{{{(}n{)}}}\) and \({\mathbf{T}}_{{\text{D}}}^{{{(}n{)}}}\) are the down-going single-interface reflection and transmission coefficient matrices at Interface n, \({\mathbf{R}}_{{\text{U}}}^{{{(}n{)}}}\) and \({\mathbf{T}}_{{\text{U}}}^{{{(}n{)}}}\) are the up-going coefficient matrices at Interface n, and I is the identity matrix.

The single-interface reflection and transmission coefficient matrices are:

$$\begin{gathered} {\mathbf{R}}_{{\text{D}}} = \left[ {\begin{array}{*{20}c} {r_{{{\text{PP}}}} } & {r_{{{\text{SP}}}} } \\ {r_{{{\text{PS}}}} } & {r_{{{\text{SS}}}} } \\ \end{array} } \right]_{{\text{D}}}^{(n)} ,{\mathbf{R}}_{{\text{U}}} = \left[ {\begin{array}{*{20}c} {r_{{{\text{PP}}}} } & {r_{{{\text{SP}}}} } \\ {r_{{{\text{PS}}}} } & {r_{{{\text{SS}}}} } \\ \end{array} } \right]_{{\text{U}}}^{(n)} , \hfill \\ \, {\mathbf{T}}_{{\text{D}}} = \left[ {\begin{array}{*{20}c} {t_{{{\text{PP}}}} } & {t_{{{\text{SP}}}} } \\ {t_{{{\text{PS}}}} } & {t_{{{\text{SS}}}} } \\ \end{array} } \right]_{{\text{D}}}^{(n)} , \, {\mathbf{T}}_{{\text{U}}} = \left[ {\begin{array}{*{20}c} {t_{{{\text{PP}}}} } & {t_{{{\text{SP}}}} } \\ {t_{{{\text{PS}}}} } & {t_{{{\text{SS}}}} } \\ \end{array} } \right]_{{\text{U}}}^{(n)} , \hfill \\ \end{gathered}$$
(23)

where r and t are the reflection and transmission coefficients of isotropic media, respectively. \({\dot{\mathbf{R}}}_{{\text{D}}}^{(n - 1)}\) is obtained from the total reflection matrix \({\hat{\mathbf{R}}}_{{\text{D}}}^{(n - 1)}\) at Interface n − 1 by the phase shift to the bottom of Interface n:

$${\dot{\mathbf{R}}}_{{\text{D}}}^{(n - 1)} = {\mathbf{E}}^{(n)} {\hat{\mathbf{R}}}_{{\text{D}}}^{(n - 1)} {\mathbf{E}}^{(n)} ,$$
(24)

where E is the phase-shift factor, and its expansion form is shown in Eq. (9).

Yang and Lu (2020) used Taylor’s expansion approach to expand the Kennett equation as:

$${\mathbf{\hat{R}}}_{{\text{D}}}^{{{\text{(}}n)}} = {\mathbf{R}}_{{\text{D}}}^{{{\text{(}}n)}} + {\mathbf{T}}_{{\text{U}}}^{{{\text{(}}n)}} {\mathbf{\dot{R}}}_{{\text{D}}}^{{{\text{(}}n - 1)}} \left[ {{\mathbf{I}} + \sum\limits_{{x = 1}}^{\infty } {({\mathbf{R}}_{{\text{U}}}^{{{\text{(}}n)}} {\mathbf{\dot{R}}}_{{\text{D}}}^{{{\text{(}}n - 1)}} )^{x} } } \right]^{{ - 1}} {\mathbf{T}}_{{\text{D}}}^{{{\text{(}}n)}} ,{\text{ }}n \in [2,m],$$
(25)

Then, they gave the second-order approximations of isotropic thin interbeds:

$${\hat{\mathbf{R}}}_{{\text{D}}}^{{{(}n)}} = {\mathbf{R}}_{{\text{D}}}^{{{(}n)}} + {\mathbf{T}}_{{\text{U}}}^{{{(}n)}} {\dot{\mathbf{R}}}_{{\text{D}}}^{{{(}n - 1)}} [{\mathbf{I}} + {\mathbf{R}}_{{\text{U}}}^{{{(}n)}} {\dot{\mathbf{R}}}_{{\text{D}}}^{{{(}n - 1)}} + ({\mathbf{R}}_{{\text{U}}}^{{{(}n)}} {\dot{\mathbf{R}}}_{{\text{D}}}^{{{(}n - 1)}} )^{2} ]{\mathbf{T}}_{{\text{D}}}^{{{(}n)}} , \, n \in [2,m].$$
(26)

Appendix 2: Graebner equations

Graebner (1992) derived the single-interface reflection and transmission coefficients of VTI layered media:

$${\mathbf{SX}} = {\mathbf{B}},$$
(27)

whose expansion form is:

$$\begin{array}{*{20}c} {\left[ {\begin{array}{*{20}c} {l_{\alpha 1} } & {m_{\beta 1} } & { - l_{\alpha 2} } & { - m_{\beta 2} } \\ {g_{1} } & {h_{1} } & { - g_{2} } & { - h_{2} } \\ {m_{\alpha 1} } & { - l_{\beta 1} } & {m_{\alpha 2} } & { - l_{\beta 2} } \\ {e_{1} } & {f_{1} } & {e_{2} } & {f_{2} } \\ \end{array} } \right]} & \cdot & {\left[ {\begin{array}{*{20}c} {r_{{{\text{pp}}}}^{{\text{D}}} } & {r_{{{\text{sp}}}}^{{\text{D}}} } & {t_{{{\text{pp}}}}^{{\text{U}}} } & {t_{{{\text{sp}}}}^{{\text{U}}} } \\ {r_{{{\text{ps}}}}^{{\text{D}}} } & {r_{{{\text{ss}}}}^{{\text{D}}} } & {t_{{{\text{ps}}}}^{{\text{U}}} } & {t_{{{\text{ss}}}}^{{\text{U}}} } \\ {t_{{{\text{pp}}}}^{{\text{D}}} } & {t_{{{\text{sp}}}}^{{\text{D}}} } & {r_{{{\text{pp}}}}^{{\text{U}}} } & {r_{{{\text{ps}}}}^{{\text{U}}} } \\ {t_{{{\text{ps}}}}^{{\text{D}}} } & {t_{{{\text{ss}}}}^{{\text{D}}} } & {r_{{{\text{sp}}}}^{{\text{U}}} } & {r_{{{\text{ss}}}}^{{\text{U}}} } \\ \end{array} } \right]} & = & {\left[ {\begin{array}{*{20}c} { - l_{\alpha 1} } & { - m_{\beta 1} } & {l_{\alpha 2} } & {m_{\beta 2} } \\ { - g_{1} } & { - h_{1} } & {g_{2} } & {h_{2} } \\ {m_{\alpha 1} } & { - l_{\beta 1} } & {m_{\alpha 2} } & { - l_{\beta 2} } \\ {e_{1} } & {f_{1} } & {e_{2} } & {f_{2} } \\ \end{array} } \right],} \\ \end{array}$$
(28)

where r and t are the reflection and transmission coefficients for a single interface of an VTI medium, respectively, and the superscripts D and U refer to the down-going and up-going waves, respectively.

The following expressions are the direction cosines of the polarization vectors:

$$\begin{gathered} l_{\alpha } = \sqrt {\frac{{a_{33} q_{\alpha }^{2} + a_{55} p^{2} - 1}}{{a_{11} p^{2} + a_{55} q_{\alpha }^{2} - 1 + a_{33} q_{\alpha }^{2} + a_{55} p^{2} - 1}}} , \\ l_{\beta } = \sqrt {\frac{{a_{11} p^{2} + a_{55} q_{\beta }^{2} - 1}}{{a_{11} p^{2} + a_{55} q_{\beta }^{2} - 1 + a_{33} q_{\beta }^{2} + a_{55} p^{2} - 1}}} , \\ m_{\alpha } = \sqrt {\frac{{a_{11} p^{2} + a_{55} q_{\beta }^{2} - 1}}{{a_{11} p^{2} + a_{55} q_{\alpha }^{2} - 1 + a_{33} q_{\alpha }^{2} + a_{55} p^{2} - 1}}} , \\ m_{\beta } = \sqrt {\frac{{a_{33} q_{\beta }^{2} + a_{55} p^{2} - 1}}{{a_{11} p^{2} + a_{55} q_{\beta }^{2} - 1 + a_{33} q_{\beta }^{2} + a_{55} p^{2} - 1}}} , \\ \end{gathered}$$
(29)

with aijcij/ρ, where cij is the stiffness component, ρ is the density of the layer, qα and qβ are the vertical slowness of P- and S-waves, respectively; and p is the horizontal slowness. Subscripts 1 and 2 refer to the lower and upper layers, respectively.

$$\begin{gathered} e = a_{55} (q_{\alpha }^{{}} l_{\alpha } + pm_{\alpha } ), \\ f = a_{55} (q_{\beta }^{{}} m_{\beta } + pl_{\beta } ), \\ g = pl_{\alpha } a_{13} + q_{\alpha }^{{}} m_{\alpha } a_{33} , \\ h = pm_{\beta } a_{13} - q_{\beta }^{{}} l_{\beta } a_{33} . \\ \end{gathered}$$
(30)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Lu, J. & Wang, Y. Second-order approximate reflection coefficients of vertical transversely isotropic thin beds. Acta Geophys. 70, 1155–1169 (2022). https://doi.org/10.1007/s11600-022-00758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-022-00758-y

Keywords

  • Thin bed
  • Thin interbed
  • VTI
  • Reflection coefficient
  • AVA
  • Numerical simulation