Skip to main content

Stream flow dynamics under current and future land cover conditions in Atsela Watershed, Northern Ethiopia

Abstract

The aim of the present study was to detect land cover change for the last three decades and estimate its impact on stream flow dynamics under the current and future scenarios. Landsat satellite imageries were used for land cover classification for selected years (1987, 2002 and 2017). The effect of land cover change on stream flow was evaluated using SWAT model, and its performance was tested. The findings indicated significant land cover changes in the last three decades. Coverage of cultivated land (17%) and bare land (1%) in 1987 increased rapidly to 43 and 17% in 2017. Furthermore, there was 70% agreement between observed and simulated stream flow in both the calibration and validation phases. The stream flow of the watershed was changing significantly in response to land cover dynamics. The evaluation of hydrological response due to land cover change showed a monthly mean stream flow decrease by 12.7 m3/s (−38%) in 1987 and 2017 in dry months. Nevertheless, it showed a monthly mean stream flow increase by 53.06 m3/s (23%) in wet months. Similarly, between the years 2017 and 2047, the stream flow was estimated to increase by 42.84 m3/s (15%) for wet months and a decrease by 13.52 m3/s (−66%) for dry months. Generally, it can be concluded that land cover changes have significant impact on stream flow. Hence, establishing strong land use and water resource policies is an essential means for better evaluation and monitoring of water resource in the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data are available and can be provided as required.

References

  1. Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Klove B (2015) A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 524:733–752

    Article  Google Scholar 

  2. Abineh T, Bogale T (2015) Accuracy assessment of land use land cover classification using google Earth. Am J Environ Protect 4:193–198

    Article  Google Scholar 

  3. Al Aamery N, Fox JF, Snyder M (2019) Evaluation of climate modeling factors impacting the variance of streamflow. J of Hydrol 542:125–142. https://doi.org/10.1016/j.jhydrol.2016.08.054

    Article  Google Scholar 

  4. Aleksankina K, Heal MR, Dore AJ, Van Oijen M, Reis S (2018) Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15. 0) as a case study. Geosci Mod Dev 11(4):1653–1664

    Article  Google Scholar 

  5. Al-Rubkhi ANM, Al-Awadhi T, Al-Barawani M (2017) Land use change analysis and modeling using open source (QGIS). Case study: Boasher Willayat. PhD Dissertation, Department of Geography, Sultan Qaboos University, Oman

  6. Al-sharif AA, Pradhan B (2015) A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, markov chain and cellular automata models. GIS Geocarto Int 30:858–881

  7. Amare L (2012) Impacts of land cover/use dynamics of gilgel abbay catchment of laketana on climate variability. Appl Geomat 4(3):155–163

    Article  Google Scholar 

  8. Amsalu A, Stroosnijd er L, de Graaff J, (2007) Long-term dynamics in land resource use and the driving forces in the Beressa watershed, highlands of Ethiopia. J Environ Manage 83(4):448–459

    Article  Google Scholar 

  9. Anaba LA, Banadda N, Kiggundu N, Wanyama J, Engel B, Moriasi D (2017) Application of SWAT to assess the effects of land use change in the Murchison Bay catchment in Uganda. Comput Water Energy Environ Eng 06(01):24–40

    Article  Google Scholar 

  10. Anderson BJR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. Geological Survey Professional Paper 964. USGS, Reston, VA

  11. Araya YH (2009) Urban land use change analysis and modeling: a case study of Setúbal and Sesimbra, Portugal. MSc. thesis, University of Münster

  12. Ashenafi AA (2014) Modeling hydrological responses to changes in land cover and climate in Geba River Basin. PhD Dissertyation, Department of Earth Sciences, Freie Universitat Berlin, Berlin, Germany, Northern Ethiopia

    Google Scholar 

  13. Babulo B, Muys B, Nega F, Tollens E, Nyssen J, Deckers J, Mathijs E (2009) The economic contribution of forest resource use to rural livelihoods in Tigray, Northern Ethiopia. For Pol Econ 11(2):109–117

    Article  Google Scholar 

  14. Balogun IA, Ishola KA (2017) Projection of future changes in landuse/landcover using cellular automata/Markov model over Akure City, Nigeria. J Rem Sen Tech 5(1):22–31. https://doi.org/10.18005/JRST0501003

    Article  Google Scholar 

  15. Barasa B, Majaliwa JGM, Lwasa S, Obando J (2011) Magnitude and transition potential of land-use/cover changes in the trans-boundary river Sio catchment using remote sensing and GIS. Ann GIS 17(1):73–80

    Article  Google Scholar 

  16. Belay KT (2013) Detection and analysis of land use and land cover changes in Tigray, North-Ethiopia. PhD thesis, KU-Leuven, Belgium

  17. Bewket W (2002) Land cover dynamics since the 1950s in Chemoga watershed, Blue Nile Basin, Ethiopia. Mt Res Dev 22(3):263–269

    Article  Google Scholar 

  18. Brook H, Argaw M, Sulaiman H, Abiye TA (2001) The Impact of land use/cover change on hydrology components due to resettlement activity: SWAT model approach. Int J Ecol Environ Sci 37(1):49–60

    Google Scholar 

  19. Brown TC, Hobbins MT, Ramirez JA (2008) Spatial distribution of water supply in the coterminous United States. JAWRA 44(6):1474–1487. https://doi.org/10.1111/j.1752-1688.2008.00252.x

    Article  Google Scholar 

  20. Busico G, Colombani N, Fronzi D, Pellegrini M, Tazioli A, Mastrocicco M (2020) Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. J Environ Manag 266:110625. https://doi.org/10.1016/j.jenvman.2020.110625

    Article  Google Scholar 

  21. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  22. da Silva VPR, Silva MT, Singh VP, de Souza EP, Braga CC et al (2018) Simulation of stream flow and hydrological response to land-cover changes in a tropical river basin. CATENA 162:166–176. https://doi.org/10.1016/j.catena.2017.11.024

    Article  Google Scholar 

  23. Danuso F (2002) Climak: a stochastic model for weather data generation. Ital J Agron 1(6):67–68

    Google Scholar 

  24. Defries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hyd Rological Processes 18:2183–2186

    Article  Google Scholar 

  25. Dejene A (2003) Integrated natural resources management to enhance food security: the case for community-based approaches in Ethiopia. Food and Agriculture Organization of the United Nations, Rome, Italy

  26. Demissie B, Nyssen J, Billi P, Haile M, Vaneetvelde V, Frankl A (2018) Land-use/cover changes in relation to stream dynamics in a marginal graben along the northern Ethiopian Rift Valley. Phys Geogr. https://doi.org/10.1080/02723646.2018.1458577

    Article  Google Scholar 

  27. Demissie B, Teklemariam D, Haile M, Meaza H, Nyssen J, Billi P, Abera W, Gebrehiwot M, Haung R, Veerle Van Eetvelde V (2021) Flood hazard in a semi-closed basin in northern Ethiopia: impact and resilience. Geo Geogr Environ. https://doi.org/10.1002/geo2.100

    Article  Google Scholar 

  28. Dobriyal P, Badola R, Hussain SA (2016) A review of methods for monitoring stream flow for sustainable water resources. Appl Water Sci 7:2617–2628

    Article  Google Scholar 

  29. Gallart F, Llorens P (2009) Catchment management under environmental change: impact of land cover change on water resources. Water Int 28(3):334–340. https://doi.org/10.1080/02508060308691707

    Article  Google Scholar 

  30. Garg V, Aggarwal SP, Nikam GPK, BR, Thakur PK, Srivastav SK, Kumar AS. (2017) Assessment of land use land cover change impact on hydrological regime of a basin. Environ Earth Sci 76:635. https://doi.org/10.1007/s12665-017-6976-z

    Article  Google Scholar 

  31. Gashaw T, Tulu T, Argaw M, Worqlul AW (2018) Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci Total Environ 619–620:1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191

    Article  Google Scholar 

  32. Geremew AA (2013) Assessing the impact of land use and land cover change on hydrology of watershed: a case study on Gilgel–Abbay Watershed, Lake Tana Basin, Ethiopia. MSc Thesis, University of Jaume, Spain and University of NOVA, Portugal

  33. Getahun YS, Lanen HV (2015) Assessing the impacts of land use-cover change on hydrology of Melka Kuntrie Subbasin in Ethiopia, using a conceptual hydrological model. Hydrol Curr Res 6(3):210–221

    Article  Google Scholar 

  34. Gwate O, Woyessa YE, Wiberg D (2015) Dynamics of land cover and impact on stream flow in the modder river basin of South Africa: case study of a quaternary catchment. Int J Environ Prot Policy 3(2):31–38

    Article  Google Scholar 

  35. Haile EG, Assefa MM (2012) The impact of land use change on the hydrology of Angereb Watershed. Int J Water Sci 1:1–7

    Google Scholar 

  36. Hassaballah K, Mohamed Y, Uhlenbrook S, Biro K (2013) Analysis of streamflow response to land use land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia/Sudan). Hydrol Earth Syst Sci 21:5217–5242

    Article  Google Scholar 

  37. Hengl T, Heuvelink BM, Kempen B, Leenaars GB, Walsh MG, Shepherd KD, Sila A, MacMillan RA, de Jesus JM, Tamene L, Tondoh JE (2015) Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS. https://doi.org/10.1371/journal.pone.0125814

    Article  Google Scholar 

  38. Her Y, Frankenberger J, Chaubey I, Srinivasan R (2015) Threshold effects in HRU definition of the soil and water assessment tool. Trans ASABE 58(2):367–378

    Google Scholar 

  39. Horvat Z (2013) Using landsat satellite imagery to determine land use/land cover changes in Međimurje County. Croatia Hrvatski Geografski Glasnik 75(2):5–28

    Article  Google Scholar 

  40. Hurni H, Tato K, Zeleke G (2005) The implications of changes in population, land use, and land management for surface runoff in the upper Nile Basin area of Ethiopia. Mt Res Dev 25:147–154

    Article  Google Scholar 

  41. Hurni K, Zeleke G, Kassie M, Tegegne B, Kassawmar T, Teferi E, Moges A, Tadesse D, Ahmed M, Degu Y, Kebebew Z, Hodel E, Amdihun A, Mekuriaw A, Debele B, Deichert G, Hurni H (2015) Economics of Land Degradation (ELD) Ethiopia case study. Soil degradation and sustainable land management in the rainfed agricultural areas of Ethiopia: an assessment of the economic implications. Report for the Economics of Land Degradation Initiative. 94 pp

  42. Kafy AA, Naim NH, Subramanyam G, Faisal AA, Ahmed NU, Rakib AA, Kona MA, Sattar GS (2021) Cellular automata approach in dynamic modelling of land cover changes using rapideye images in Dhaka, Bangladesh. Environ Chall 4:100084. https://doi.org/10.1016/j.envc.2021.100084

    Article  Google Scholar 

  43. Kou Y, Li Z, Hua K, Li Z (2019) Hydrochemical characteristics, controlling factors, and solute sources of streamflow and groundwater in the Hei River Catchment, China. Water 11(11):2293. https://doi.org/10.3390/w11112293

    Article  Google Scholar 

  44. Legesse D, Vallet-Coulomba C, Gassea F (2003) Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. AGRIS 275(1/2):67–85

    Google Scholar 

  45. Li LJ, Zhang L, Wang H, Wang J, Yang JW, Jiang DJ, Li JY, Qin DY (2007) Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol Process 21(25):3485–3491. https://doi.org/10.1002/hyp.6485

    Article  Google Scholar 

  46. Li Y, Chang J, Luo L, Wang Y, Guo A, Ma F, Fan J (2019a) Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol Res 50(1):244–261. https://doi.org/10.2166/nh.2018.006

    Article  Google Scholar 

  47. Li Z, Xiao J, Evaristo J, Li Z (2019b) Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei River of China. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113006

    Article  Google Scholar 

  48. Losiri C, Nagai M, Ninsawat S, Shrestha RP (2016) Modeling urban expansion in Bangkok metropolitan region using demographic–economic data through cellular automata-markov Chain and multi-layer perceptron-markov chain models. Sustainability 8:686

    Article  Google Scholar 

  49. Manandhar R, Odeh I, Ancev T (2009) Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sens 1:330–344

    Article  Google Scholar 

  50. McSweeney C, New M, Lizcano G, Lu X (2010) The UNDP climate change country profiles. Bull Am Meteorol Soc 91(2):157–166

    Article  Google Scholar 

  51. MEFCC (Ministry on Environment, Forest and Climate Change) (2015) Enhancing the role of forestry in building climate resilient green economy in Ethiopia scaling up effective forest management practices in Tigray National Regional State with emphasis on area exclosures. Center for International Forestry Research, Ethiopia Office, Addis Ababa

    Google Scholar 

  52. Mekuria W, Lang S, Johnston R, Belay B, Amare D, Gashaw T, Desta G, Noble A, Wale A (2015a) Restoring aboveground carbon and biodiversity: the case study from the Nile basin, Ethiopia. For Sci Technol 11:86–96

    Google Scholar 

  53. Mekuria W, Langan S, Johnston R, Belay B, Amare D, Gashaw T, Desta G, Noble A, Wale A (2015b) Restoring aboveground carbon and biodiversity: the case study from the Nile basin, Ethiopia. For Sci Technol 11:86–96

    Google Scholar 

  54. Mekuria W, Veldkamp E, Corre MD, Mitiku H (2011) Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci Soc Am J 75:246–256

    Article  Google Scholar 

  55. Moriasi DN. et al. 2007. Model Evaluation Guidelines For Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers ISSN 0001−2351, 50(3): 885–900.

  56. Nyssen J, Munro R, Mitiku H, Poesen J, Descheemaeker K, Haregeweyn N, et al. (2008) Understanding the environmental changes in Tigray, Ethiopia: a photographic record over 30 years. Tropical Agriculture Association (TAA) & Cambridge Conservation Forum (CCF) Joint Seminar: Land Use Conflicts and Change. UNEP-WCMC, Cambridge, UK, 4 December 2008

  57. Nyssen J, Haile M, Naudts J, Munro N, Poesen J, Moeyersons J, Frankl A, Deckers J, Pankhurst R (2009) Sci Total Environ 407(8): 2749-2755

  58. Ouedraogo I, Tigabu M, Savadogo P, Compaoré H, Odén PC, Ouadba JM (2010) Land cover change and its relation with population dynamics in Burkina Faso. West Africa Land Degrad Dev 21(5):453–462. https://doi.org/10.1002/ldr.981

    Article  Google Scholar 

  59. Patel SK, Verma P, Singh GS (2019) Agricultural growth and land use land cover change in peri-urban India. Environ Monit Assess 191:600. https://doi.org/10.1007/s10661-019-7736-1

    Article  Google Scholar 

  60. Qi J, Li S, Yang Q, Xing Z, Meng FR (2017) SWAT setup with long-term detailed landuse and management records and modification for a micro-watershed influenced by freeze-thaw cycles. Water Resour Manage 31:3953–3974. https://doi.org/10.1007/s11269-017-1718-2

    Article  Google Scholar 

  61. Rathjens H, Oppelt N (2012) SWAT model calibration of a grid-based setup. Adv Geosci 32:55–61. https://doi.org/10.5194/adgeo-32-55-2012

    Article  Google Scholar 

  62. Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand. India 18:77–84

    Google Scholar 

  63. Rientjes THM, Haile AT, Kebede E, Mannaerts CM, Habib E, Steenhuis TS (2011) Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia. Hydrol Earth Syst Sci 15:1979–1989

    Article  Google Scholar 

  64. Ruishan HU, Suocheng D (2013) Land use dynamics and landscape patterns in Shanghai, Jiangsu and Zhejiang. J Resources and Ecology 4(2):141–148

    Article  Google Scholar 

  65. Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis Landsc. Urb Plan 96:108–122

    Article  Google Scholar 

  66. Santhi C, Arnold JG, Williams JR, Srinivasan DWA, R, (2007) Validation of the SWAT model on a large river basin with point and nonpoint sources. Am Water Resour Assoc 37(5):1169–1188

    Article  Google Scholar 

  67. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11(10):1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x

    Article  Google Scholar 

  68. Seyoum T, Koch M (2013) SWAT – hydrologic modeling and simulation of inflow to cascade reservoirs of the semi-ungaged Omo-Gibe River Basin, Ethiopia. In: The 6th international conference on water resources and environment research proceedings: 439–461

  69. Shatnawi N, Qdais HA (2019) Mapping urban land surface temperature using remote sensing techniques and artificial neural network modelling. Int J Remote Sens 40(10):1–16

    Article  Google Scholar 

  70. Tadesse W, Stephanie W, William C, Constance W (2015) Assessing the impact of land-use land-cover change on stream water and sediment yields at a watershed level using SWAT. Open J Modern Hydrology 5:68–85

    Article  Google Scholar 

  71. Takala W, Adugna T, Tamam D (2016) The effects of land use land cover change on hydrological process of Gilgel Gibe, Omo Gibe Basin, Ethiopia.pdf>The effects of land use land cover change on hydrological process of Gilgel Gibe, Omo Gibe Basin, Ethiopia. Int J Sci Eng Res 7(8):117–128

    Google Scholar 

  72. Tena TM, Mwaanga P, Nguvulu A (2019) Impact of land use/land cover change on hydrological components in chongwe river catchment. Sustainability 11(22):6415. https://doi.org/10.3390/su11226415

    Article  Google Scholar 

  73. Vicente-Serrano SM, MPeña-Gallardo M, Hannaford J, Murphy C, Lorenzo-Lacruz J, Dominguez-Castro F, López-Moreno JI, Beguería S, Noguera I, Harrigan S, Vidal JP (2019) Climate, irrigation, and land cover change explain streamflow trends in countries bordering the Northeast Atlantic. Geophys Res Lett 46(19):10821–10833

    Article  Google Scholar 

  74. Wada Y, Van Beek LPH, Wanders N, Pierkens MFP (2013) Human water consumption intensifies hydrological drought worldwide. Environ Res Lett 8(3):034036. https://doi.org/10.1088/1748-9326/8/3/034036

    Article  Google Scholar 

  75. Welday K, Gebremariam B (2017) Effect of land use land cover dynamics on hydrological response of watershed: case study of Tekeze Dam watershed, northern Ethiopia. Int Soil Water Conserv Res. https://doi.org/10.1016/j.iswcr.2017.03.002

    Article  Google Scholar 

  76. Winchell M, Srinivasan R, Di Luzio M, Arnold J. 2010. ArcSWAT Interface for SWAT2009. User’s Guide. file:///C:/Users/user/AppData/Local/Temp/ArcSWAT2009Englishtextbook.pdf

  77. Zeleke G, Hurni H (2001) Implications of land use and land cover dynamics for mountain resource degradation in the northwestern Ethiopian highlands. Mt Res Dev 21(2):184–191

    Article  Google Scholar 

  78. Zhou Q, Wang W, Pang Y, Zhou Z, Luo H (2015) Temporal and spatial distribution characteristics of water resources in Guangdong Province based on a cloud model. Water Sci Eng 8(4):263–272. https://doi.org/10.1016/j.wse.2015.09.001

    Article  Google Scholar 

  79. Zsuzsanna B, Pongracz and Barcza (2005) Analysis of land-use/land-cover change in the Carpathian region based on remote sensing techniques. Phys Chem Earth 30: 109–115

Download references

Acknowledgements

We acknowledge Mekelle University for giving the opportunity and support to conduct this research. We also acknowledge The Tigray Bureau of Education for the financial help to conduct this research. We also acknowledge the field work assistants, local farmers and administrators for their unreserved help during data collection. We acknowledge the reviewers and the associate editor who handled the review process for their comments and corrections to improve the quality of the manuscript.

Funding

Not Applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Biadgilgn Demissie.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Code availability

Used the available software programs, ArcGIS and SWAT.

Additional information

Communicated by Dr. Richard Boothroyd (ASSOCIATE EDITOR) / Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gebretekle, H., Nigusse, A.G. & Demissie, B. Stream flow dynamics under current and future land cover conditions in Atsela Watershed, Northern Ethiopia. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00691-6

Download citation

Keywords

  • SWAT
  • Land use
  • Stream flow
  • Water resource
  • Stream dynamics
  • Land degradation