Skip to main content

Aerosol dipole pattern over India: consequences on rainfall and relation with wind circulations

Abstract

The aerosol concentrations are changing in rapid phase in the recent decades over Indian subcontinent. A general conclusion that is postulated from various studies indicated high aerosol loading over the Indian subcontinent. The aerosol concentrations are found to alter cloud-precipitation chemistry globally. Analysing the trends of aerosol concentrations over the Indian subcontinent is crucial to understand in depth the aerosol–precipitation relationship over these regions. In the present study, the long-term trend (2000–2019) of aerosols, precipitation and winds has been analysed over the Indian subcontinent. The work aims to identify the zones of significant increasing/decreasing Aerosol Optical Depth concentrations and alter the rainfall patterns over these regions. Mann–Kendall test has been employed for trend analysis. An aerosol dipole pattern is observed along the eastern-western boundaries of the monsoon trough over the Indian subcontinent (India, Bangladesh and Pakistan), which shows an inverse relationship with the rainfall patterns. Over the north-western region of the Indian subcontinent, the reduced pollution and enhanced precipitation may further alter the land-sea thermal gradient, resulting in the weakening of monsoonal circulation. Enhanced pollution over eastern India is adjusting the precipitation distribution along with the weakening of low-level jet and moisture transport. The present study provides an evidence of aerosol–precipitation relation over the Indian subcontinent using long-term datasets that has profound application in better understanding the weather systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abish B, Mohanakumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Planet Change 106:13–19. https://doi.org/10.1016/j.gloplacha.2013.02.007

    Article  Google Scholar 

  2. Altaratz O, Koren I, Remer LA, Hirsch E (2014) Cloud invigoration by aerosols—coupling between microphysics and dynamics. Atmos Res 140:38–60. https://doi.org/10.1016/j.atmosres.2014.01.009

    Article  Google Scholar 

  3. Arora A, Rao SA, Chattopadhyay R, Goswami T, George G, Sabeerali CT (2016) Role of Indian Ocean SST variability on the recent global warming hiatus. Glob Planet Change 143:21–30. https://doi.org/10.1016/j.gloplacha.2016.05.009

    Article  Google Scholar 

  4. Asoka A, Gleeson T, Wada Y, Mishra V (2017) Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat Geosci 10(2):109–117. https://doi.org/10.1038/ngeo2869

    Article  Google Scholar 

  5. Bodenheimer S, Nirel R, Lensky IM, Dayan U (2021) The synoptic skill of aerosol optical depth and angstrom exponent levels over the Mediterranean Basin. Int J Climatol 41(3):1801–1820. https://doi.org/10.1002/joc.6931

    Article  Google Scholar 

  6. Chen G, Wang WC, Chen JP (2018) Circulation responses to regional aerosol climate forcing in summer over East Asia. Clim Dyn 51(11–12):3973–3984. https://doi.org/10.1007/s00382-018-4267-3

    Article  Google Scholar 

  7. Choudhury G, Tyagi B, Singh J, Sarangi C, Tripathi SN (2019) Aerosol-orography-precipitation–a critical assessment. Atmos Environ 214:116831. https://doi.org/10.1016/j.atmosenv.2019.116831

    Article  Google Scholar 

  8. Choudhury G, Tyagi B, Vissa NK, Singh J, Sarangi C, Tripathi SN, Tesche M (2020) Aerosol-enhanced high precipitation events near the Himalayan foothills. Atmos Chem Phys 20(23):15389–15399. https://doi.org/10.5194/acp-20-15389-2020

    Article  Google Scholar 

  9. Das S, Mohanty UC, Tyagi A, Sikka DR, Joseph PV, Rathore LS, Habib A, Baidya SK, Sonam K, Sarkar A (2014) The SAARC STORM: a coordinated field experiment on severe thunderstorm observations and regional modeling over the South Asian Region. Bull Am Meteorol Soc 95(4):603–617. https://doi.org/10.1175/BAMS-D-12-00237.1

    Article  Google Scholar 

  10. Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-17599-1

    Article  Google Scholar 

  11. Dey S, Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38:L14811. https://doi.org/10.1029/2011GL048153

    Article  Google Scholar 

  12. Feng J, Li J, Zhu J, Liao H, Yang Y (2017) Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China. J Geophys Res Atmos 122(5):2734–2749. https://doi.org/10.1002/2016JD026175

    Article  Google Scholar 

  13. Feng J, Zhu J, Li J, Liao H (2020) Aerosol concentrations variability over China: two distinct leading modes. Atmos Chem Phys 20(16):9883–9893. https://doi.org/10.5194/acp-20-9883-2020

    Article  Google Scholar 

  14. Filonchyk M, Hurynovich V, Yan H (2020) Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua. Geosci Front 11(6):2169–2181. https://doi.org/10.1016/j.gsf.2020.03.014

    Article  Google Scholar 

  15. Guhathakurta P, Rajeevan M, Sikka DR, Tyagi A (2015) Observed changes in southwest monsoon rainfall over India during 1901–2011. Int J Climatol 35(8):1881–1898. https://doi.org/10.1002/joc.4095

    Article  Google Scholar 

  16. Guo D, Sun J, Yang K, Pepin N, Xu Y, Xu Z, Wang H (2020) Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snow-albedo feedback. Int J Climatol 40(3):1644–1655. https://doi.org/10.1002/joc.6292

    Article  Google Scholar 

  17. Hatzianastassiou N, Matsoukas C, Drakakis E, Stackhouse PW Jr, Koepke P, Fotiadi A, Pavlakis KG, Vardavas I (2007) The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS). Atmos Chem Phys 7(10):2585–2599. https://doi.org/10.5194/acp-7-2585-2007

    Article  Google Scholar 

  18. Jacobson MZ (2012) Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. J Geophys Res Atmos. https://doi.org/10.1029/2011JD017218

    Article  Google Scholar 

  19. Jeoung H, Chung CE, Van Noije T, Takemura T (2014) Relationship between fine-mode AOD and precipitation on seasonal and interannual time scales. Tellus b: Chem Phys Meteorol 66(1):23037. https://doi.org/10.3402/tellusb.v66.23037

    Article  Google Scholar 

  20. Jiang X, Ting M (2017) A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J Clim 30(23):9607–9620. https://doi.org/10.1175/JCLI-D-16-0914.1

    Article  Google Scholar 

  21. Jin Q, Wang C (2018) The greening of Northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival. Sci Rep 15 8(1):1–9. https://doi.org/10.1038/s41598-018-23055-5

    Article  Google Scholar 

  22. Jin Q, Wei J, Yang ZL (2014) Positive response of Indian summer rainfall to Middle East dust. Geophy Res Lett 16 41(11):4068–4074. https://doi.org/10.1002/2014GL059980

    Article  Google Scholar 

  23. Kendall MG (1975) Rank correlation methods. Oxford University Press, New York, NY

    Google Scholar 

  24. Kim MK, Lau WK, Kim KM, Sang J, Kim YH, Lee WS (2016) Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Clim Dyn 46(7–8):2657–2671. https://doi.org/10.1007/s00382-015-2722-y

    Article  Google Scholar 

  25. Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J (2016) Aerosol optical depth trend over the Middle East. Atmos Chem Phys 16(8):5063–5073. https://doi.org/10.5194/acp-16-5063-2016

    Article  Google Scholar 

  26. Krishnan R (2002) Ramanathan V (2002) Evidence of surface cooling from absorbing aerosols. Geophys Res Lett 29(9):54–61. https://doi.org/10.1029/2002GL014687

    Article  Google Scholar 

  27. Kumar M, Parmar KS, Kumar DB, Mhawish A, Broday DM, Mall RK, Banerjee T (2018) Long-term aerosol climatology over Indo-Gangetic Plain: trend, prediction and potential source fields. Atmos Environ 180:37–50. https://doi.org/10.1016/j.atmosenv.2018.02.027

    Article  Google Scholar 

  28. Kumar PV, Naidu CV, Prasanna K (2020) Recent unprecedented weakening of Indian summer monsoon in warming environment. Theor Appl Climatol 140(1):467–486. https://doi.org/10.1007/s00704-019-03087-1

    Article  Google Scholar 

  29. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z,855-864

    Article  Google Scholar 

  30. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett. https://doi.org/10.1029/2006GL027546

    Article  Google Scholar 

  31. Lau WK, Kim KM, Leung LR (2017) Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects. Geosci Lett 4(1):1–11. https://doi.org/10.1186/s40562-017-0094-3

    Article  Google Scholar 

  32. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection MODIS dark-target aerosol products over land. Atmos Chem Phys 10(21):10399–10420. https://doi.org/10.5194/acp-10-10399-2010

    Article  Google Scholar 

  33. Lin L, Xu Y, Wang Z, Diao C, Dong W, Xie SP (2018) Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys Res Lett 45(15):7857–7865. https://doi.org/10.1029/2018GL078308

    Article  Google Scholar 

  34. Manoj MG, Lee SS, Li Z (2021) Competing aerosol effects in triggering deep convection over the Indian Region. Clim Dyn 56(5):1815–1835. https://doi.org/10.1007/s00382-020-05561-3

    Article  Google Scholar 

  35. Madhura RK, Krishnan R, Revadekar JV, Mujumdar M, Goswami BN (2015) Changes in western disturbances over the Western Himalayas in a warming environment. Clim Dyn 44(3–4):1157–1168. https://doi.org/10.1007/s00382-014-2166-9

    Article  Google Scholar 

  36. Maharana P, Agnihotri R, Dimri AP (2021) Changing Indian monsoon rainfall patterns under the recent warming period 2001–2018. Clim Dyn. https://doi.org/10.1007/s00382-021-05823-8

    Article  Google Scholar 

  37. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  38. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253. https://doi.org/10.1126/science.1075159

    Article  Google Scholar 

  39. Ming Y, Ramaswamy V (2011) A model investigation of aerosol-induced changes in tropical circulation. J Clim 24(19):5125–5133. https://doi.org/10.1175/2011JCLI4108.1

    Article  Google Scholar 

  40. Moorthy KK, and Satheesh SK (2011) Black carbon aerosols over India. UNEP’s Black Carbon e-Bulletin, 3: 1–3. http://www.rrcap.ait.ac.th/abc/Newsletter/Black%20Carbon%20e-Bulletin,%20December%202011.pdf

  41. Moorthy KK, Suresh Babu S, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian Region. Geophys Res Lett 40(5):1011–1014. https://doi.org/10.1002/grl.50165

    Article  Google Scholar 

  42. Pandey SK, Vinoj V, Landu K, Babu SS (2017) Declining pre-monsoon dust loading over South Asia: signature of a changing regional climate. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-16338-w

    Article  Google Scholar 

  43. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS 102(15):5326–5333. https://doi.org/10.1073/pnas.0500656102

    Article  Google Scholar 

  44. Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res: Atmos 27. https://doi.org/10.1029/2007JD008560

    Article  Google Scholar 

  45. Ramachandran S, Kedia S (2013) Aerosol, clouds and rainfall: inter-annual and regional variations over India. Clim Dyn 40(7–8):1591–1610. https://doi.org/10.1007/s00382-012-1594-7

    Article  Google Scholar 

  46. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. https://doi.org/10.1038/nature08238

    Article  Google Scholar 

  47. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6(1):7423. https://doi.org/10.1038/ncomms8423

    Article  Google Scholar 

  48. Samset BH, Lund MT, Bollasina M, Myhre G, Wilcox L (2019) Emerg Asian Aerosol Patterns Nat Geosci 12(8):582–584. https://doi.org/10.1038/s41561-019-0424-5

    Article  Google Scholar 

  49. Sarangi C, Tripathi SN, Kanawade VP, Koren I, Pai DS (2017) Investigation of the aerosol–cloud–rainfall association over the Indian summer monsoon region. Atmos Chem Phys 17(8):5185–5204. https://doi.org/10.5194/acp-17-5185-2017

    Article  Google Scholar 

  50. Sarangi C, Tripathi SN, Qian Y, Kumar S, Ruby Leung L (2018) Aerosol and urban land use effect on rainfall around cities in Indo-Gangetic Basin from observations and cloud resolving model simulations. J Geophys Res Atmos 123(7):3645–3667. https://doi.org/10.1002/2017JD028004

    Article  Google Scholar 

  51. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.2307/2285891

    Article  Google Scholar 

  52. Shaheen A, Wu R, Lelieveld J, Yousefi R, Aldabash M (2021) Winter AOD trend changes over the Eastern Mediterranean and Middle East region. Int J Climatol. https://doi.org/10.1002/joc.7139

    Article  Google Scholar 

  53. Solmon F, Nair VS, Mallet M (2015) Increasing Arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15(14):8051–8064. https://doi.org/10.5194/acp-15-8051-2015

    Article  Google Scholar 

  54. Streets DG, Yu C, Wu Y, Chin M, Zhao Z, Hayasaka T, Shi G (2008) Aerosol trends over China, 1980–2000. Atmos Res 88(2):174–182. https://doi.org/10.1016/j.atmosres.2007.10.016

    Article  Google Scholar 

  55. Tyagi B, Choudhury G, Vissa NK, Singh J, Tesche M (2021) Changing air pollution scenario during COVID-19: Redefining the hotspot regions over India. Environ Pollut 271:116354. https://doi.org/10.1016/j.envpol.2020.116354

    Article  Google Scholar 

  56. Vinoj V, Rasch PJ, Wang H, Yoon JH, Ma PL, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7(4):308–313. https://doi.org/10.1038/ngeo2107

    Article  Google Scholar 

  57. Vishnu S, Francis PA, Shenoi SSC, Ramakrishna SSVS (2016) On the decreasing trend of the number of monsoon depressions in the Bay of Bengal. Environ Res Lett 11(1):014011. https://doi.org/10.1088/1748-9326/11/1/014011

    Article  Google Scholar 

  58. Vissa NK, Anandh PC, Behera MM, Mishra S (2019) ENSO-induced groundwater changes in India derived from GRACE and GLDAS. J Earth Syst Sci 128(5):115. https://doi.org/10.1007/s12040-019-1148-z

    Article  Google Scholar 

  59. Wang C, Kim D, Ekman AM, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett. https://doi.org/10.1029/2009GL040114

    Article  Google Scholar 

  60. Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L (2018) Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 18(19):14095–14111. https://doi.org/10.5194/acp-18-14095-2018

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to NASA Goddard Space Flight Center (GSFC) and Atmosphere Archive and Distribution System (LAADS) for making the level-3 MODIS datasets, NCAR for GPCC datasets and NCEP/NCAR for reanalysis data of winds datasets available. Authors want to acknowledge Department of Science and Technology, Govt. of India for providing the funding [project-funding code: DST/CCP/Aerosol/90/2017(G), under SPLICE, Climate change, National Network Programme on Aerosol].

Author information

Affiliations

Authors

Contributions

Naresh Krishna Vissa and Bhishma Tyagi were involved in conceptualization, methodology, writing—Original draft preparation, software, writing—reviewing and editing

Corresponding author

Correspondence to Bhishma Tyagi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Prof. Ewa Bednorz (ASSOCIATE EDITOR) / Prof. Theodore Karacostas (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vissa, N.K., Tyagi, B. Aerosol dipole pattern over India: consequences on rainfall and relation with wind circulations. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00688-1

Download citation

Keywords

  • Aerosol
  • Precipitation
  • Monsoonal circulation
  • Aerosol–precipitation interaction