Skip to main content
Log in

Delineation of potential seismic sources using weighted K-means cluster analysis and particle swarm optimization (PSO)

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Potential seismic sources play an important role in seismic hazard analysis. Identification of seismic sources is generally carried out on the basis of expert judgments, and in most cases, different and controversial results are obtained when several experts are consulted. In fact, the method of source identification is probably an important cause of uncertainty in the seismic hazard analysis. The main objective of this research is to provide an algorithm which combines the weighted K-means clustering analysis and Particle Swarm Optimization in order to automatically identify global optimum clusters by analysing seismic event data. These clusters, together with seismotectonic information, can be used to determine seismic sources. Two validity indexes, Davies–Bouldin's measure and Chou–Su–Lai's measure (CS), are used to determine optimum number of clusters. Study area is located at the longitude of 46°–48° E and latitude of 34°–36° N that is considered as the most seismically active part of Zagros continental collision zone, which has experienced large and destructive earthquakes due to movements of Sahneh and Nahavand segments of Zagros Main Recent Fault. As a result, 7-cluster model which is identified on the basis of DB validity index seems to be suitable for the considered earthquake catalogue, despite some limitations in partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aki K (1979) Characterization of barriers on an earthquake fault. J Geophys Res Solid Earth 84(B11):6140–6148

    Google Scholar 

  • Al Shalabi L, Shaaban Z, Kasasbeh B (2006) Data mining: a preprocessing engine. J Comput Sci 2(9):735–739

    Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Aminzadeh F, Chatterjee S (1984) Applications of clustering in exploration seismology. Geoexploration 23(1):147–159

    Google Scholar 

  • Ansari A, Firuzi E, Etemadsaeed L (2015) Delineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and monte carlo simulation. Bull Seismol Soc Am 105(4):2174–2191

    Google Scholar 

  • Baker C, Jackson J, Priestley K (1993) Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophys J Int 115(1):41–61

    Google Scholar 

  • Berberian M (1981) Active faulting and tectonics of Iran. In: Gupta HK, Delany FM (eds) Zagros-Hindukush-Himalaya Geodynamic evolution, Am. Geophys. Union and Geol. Soc Am, Geodyn. Ser 3: 33–69

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3–4):193–224

    Google Scholar 

  • Burton PW, Hall TR (2014) Segmentation of the Sumatran fault. Geophys Res Lett 41(12):4149–4158

    Google Scholar 

  • Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theory Methods 3(1):1–27

    Google Scholar 

  • Chou CH, Su MC, Lai E (2004) A new cluster validity measure and its application to image compression. Pattern Anal Appl 7(2):205–220

    Google Scholar 

  • Das S, Abraham A, Konar A (2007) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern-Part A Syst Humans 38(1):218–237

    Google Scholar 

  • Das S, Abraham A, Konar A (2009) Metaheuristic clustering. Springer, Berlin

    Google Scholar 

  • Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Google Scholar 

  • Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4(1):95–104

    Google Scholar 

  • Ebel JE, Kafka AL (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seismol Soc Am 89(4):854–866

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan. https://doi.org/10.1109/MHS.1995.494215

  • Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66(4):8–21

    Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Google Scholar 

  • Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145

    Google Scholar 

  • Halkidi M, Vazirgiannis M (2001) Clustering validity assessment: Finding the optimal partitioning of a data set. In proceedings 2001 IEEE international conference on data mining, San Jose, CA, USA. https://doi.org/10.1109/ICDM.2001.989517

  • Hartigan JA, Wong MA (1979) Algorithm AS136: a K-means clustering Algorithm. J Royal Stat Soc 28(1):100–108

    Google Scholar 

  • Helmstetter A, Kagan YY, Jackson DD (2007) High-resolution time-independent grid-based forecast for M≥ 5 earthquakes in California. Seismol Res Lett 78(1):78–86

    Google Scholar 

  • Jackson JA (1980) Reactivation of basement faults and crustal shortening in orogenic belts. Nature 283(5745):343–346

    Google Scholar 

  • Jackson J, Haines J, Holt W (1995) The accommodation of Arabia-Eurasia plate convergence in Iran. J Geophys Res Solid Earth 100(B8):15205–15219

    Google Scholar 

  • Jackson J, McKenzie D (1984) Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophys J Int 77(1):185–264

    Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31:264–322. https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley sym posium on mathematical statistics and probability 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992

  • Manda K, Hanuman AS, Satapathy SC, Chaganti V, Babu AV (2010) A software tool for data clustering using particle swarm optimization. In international conference on swarm, evolutionary, and memetic computing. https://doi.org/10.1007/978-3-642-17563-3_34

  • Mirzaei N, Gao M, Chen YT (1999) Delineation of potential seismic sources for seismic zoning of Iran. J Seismolog 3(1):17–30

    Google Scholar 

  • Mirzaei N, Gheitanchi MR (2002) Seismotectonics of Sahneh fault, middle segment of main recent fault, Zagros mountains, western Iran. J Earth Space Phys 28(2):1–8

    Google Scholar 

  • Molnar P, Chen WP (1982) Seismicity and mountain building. In: Hsued KJ (ed) Mountain building processes. Academic Press, London, pp 41–57

    Google Scholar 

  • Mousavi Bafrouei SH, Mirzaei N, Shabani E (2014a) A declustered earthquake catalog for the Iranian Plateau. Ann Geophys. https://doi.org/10.4401/ag-6395

    Article  Google Scholar 

  • Mousavi Bafrouie SH, Mirzaei N, Shabani E, Eskandari Ghadi M (2014b) Seismic hazard zoning in Iran and estimating peak ground acceleration in provincial capitals. J Earth Space Phys 40(4):15–38 (in Persian with English summary)

    Google Scholar 

  • Omran MG, Engelbrecht AP, Salman A (2007) Dynamic clustering using particle swarm optimization with application in unsupervised image classification. Int J Comput Inf Eng 1(9):2898–2903

    Google Scholar 

  • Omran MG, Engelbrecht AP, Salman A (2004) Image classification using particle swarm optimization. Recent Adv Simul Evol Learn. https://doi.org/10.1142/9789812561794_0019

    Article  Google Scholar 

  • Ouillon G, Ducorbier C, Sornette D (2008) Automatic reconstruction of fault networks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005032

    Article  Google Scholar 

  • Ouillon G, Sornette D (2011) Segmentation of fault networks determined from spatial clustering of earthquakes. J Geophys Res Solid Earth. https://doi.org/10.1029/2010JB007752

    Article  Google Scholar 

  • Ouyang Z, He J, Zhang K (2008) Data Mining for Seismic Exploration. In 2008 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology, Sydney, NSW, Australia. https://doi.org/10.1109/WIIAT.2008.161.

  • Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recogn 37(3):487–501

    Google Scholar 

  • Prabha K A, Visalakshi N K (2014) Improved particle swarm optimization based k-means clustering. In 2014 international conference on intelligent computing applications, Coimbatore, India. https://doi.org/10.1109/ICICA.2014.21

  • Rehman K, Burton PW, Weatherill GA (2014) K-means cluster analysis and seismicity partitioning for Pakistan. J Seismolog 18(3):401–419

    Google Scholar 

  • Snyder DB, Barazangi M (1986) Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics 5(3):361–373

    Google Scholar 

  • Tchalenko JS, Braud J (1974) Seismicity and structure of the Zagros (Iran): the main recent fault between 33 and 35 N. Philosophical transactions of the royal society of London. Series A Math Phys Sci 277(1262):1–25

    Google Scholar 

  • Tsai CW, Huang WC, Chiang MC (2014) Recent development of metaheuristics for clustering. In Mobile, Ubiquitous, and Intelligent Computing, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40675-1-93

  • Theodoridis S, Koutroubas K (1999) Pattern recognition. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Taroni M (2021) Back to the future: old methods for new estimation and test of the Gutenberg-Richter b-value for catalogues with variable completeness. Geophys J Int 224(1):337–339

    Google Scholar 

  • Voronoi G, (1908a) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(133):97–102

  • Voronoi G, (1908b) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908(134): 198–287

  • Wang X, Bai Y (2016) The global Minmax k-means algorithm. Springer plus 5(1):1–15

    Google Scholar 

  • Weatherill G, Burton PW (2009) Delineation of shallow seismic source zones using K-means cluster analysis, with application to the Aegean region. Geophys J Int 176(2):565–588

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869

    Google Scholar 

  • Wyss M, Hasegawa A, Wiemer S, Umino N (1999) Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1 off-Sanriku earthquake, japan. Ann Geophys 42(5):851–869

    Google Scholar 

  • Yuill RS (1971) The standard deviational ellipse; an updated tool for spatial description. Geografiska Annaler Series B Human Geography 53(1):28–39

    Google Scholar 

  • Zhao M, Tang H, Guo J, Sun Y (2014) Data clustering using particle swarm optimization. In Future Information Technology, Berlin. https://doi.org/10.1007/978-3-642-55038-6_95

Download references

Acknowledgements

The authors greatly appreciate Editor and anonymous reviewers for their thorough comments and suggestions, which greatly helped improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Heidari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dr. Rodolfo Console (ASSOCIATE EDITOR) / Prof. Ramón Zúñiga (CO-EDITOR-IN-CHIEF).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhhosseini, Z., Mirzaei, N., Heidari, R. et al. Delineation of potential seismic sources using weighted K-means cluster analysis and particle swarm optimization (PSO). Acta Geophys. 69, 2161–2172 (2021). https://doi.org/10.1007/s11600-021-00683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00683-6

Keywords

Navigation