Skip to main content
Log in

Seasonal variation of quiet-time TEC over West and Central African equatorial/low-latitude ionosphere (2011–2014)

  • Research Article - Atmospheric & Space Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This study investigates seasonal variation of quiet-time total electron content (TEC) over West and Central African equatorial/low-latitude ionosphere during years 2011–2014. We used TEC data obtained at five African equatorial/low-latitude GPS stations, namely; Yamoussoukro (geographic coordinates 6.87° N, 5.24° W; geomagnetic coordinates 2.84°S, 67.41°E) [Ivory Coast], Cotonou (6.37° N, 2.43° E; 3.09° S, 74.52° E) [Benin Republic], Accra (5.55° N, 0.02° W; 3.50°S, 73.13°E) [Ghana], Yaoundé (3.87°N, 11.52°E; 5.29°S, 83.13°E) [Cameroon] and Libreville (0.39°N, 9.45°E; 7.99° S, 80.84°E) [Gabon]. Diurnally, at all the stations, TEC consistently reached maximum at around 1400–1600 LT and minimum at 0600 LT. Surprisingly, contrary to the notion that on season-by-season analysis, TEC over the African equatorial/low-latitude region usually attains maximum during equinoxes, in 2011 and 2013, over West and Central African low-latitude region, TEC attained maximum values in December solstice. In 2012 and 2014, highest TEC values were recorded in equinoxes. Overall, June solstice consistently recorded the lowest values of TEC over West and Central African equatorial/low-latitude region. TEC showed solar activity dependence: highest in 2014 and lowest in 2011. TEC also showed clear evidence of higher electron density at Libreville (inner flank of the southern Equatorial Ionization Anomaly (EIA) crest) than at Yamoussoukro (EIA trough). These results would be helpful in developing new predictive models or validating the existing models for the West and Central African equatorial/low-latitude ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akala AO, Adeloye AB, Somoye EO (2010) Ionospheric of F2 variability at equatorial and low latitudes during high moderate and low solar activity. Adv Space Res 45(11):1311–1314

    Article  Google Scholar 

  • Akala AO, Seemala GK, Doherty PH, Valladares CE, Carrano CS, Espinoza J, Oluyo S (2013) Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of solar cycle 24. Ann Geophys 31(11):2085–2096. https://doi.org/10.5194/angeo-31-2085-2013

    Article  Google Scholar 

  • Akala AO, Awoyele A, Doherty PH (2016) Statistics of GNSS amplitude scintillation occurrences over Dakar, Senegal, at varying elevation angles during the maximum phase of solar cycle 24. Space Weather 14:233–246. https://doi.org/10.1002/2015SW001261

    Article  Google Scholar 

  • Akala AO, Ejalonibu AH, Doherty PH, Radicella SM, Groves KM, Carrano CS, Bridgwood CT, Stoneback RA (2017) Characterization of GNSS amplitude scintillations over Addis Ababa during 2009–2013. Adv Space Res 59:1969–1983

    Article  Google Scholar 

  • Akala AO, Oyeyemi EO, Amaechi PO, Radicella SM, Nava B, Amory-Mazaudier C (2020) Longitudinal responses of the equatorial/low-latitude ionosphere over the oceanic regions to geomagnetic storms of May and September 2017. J Geophys Res Space Phys 125:e2020JA027963: https://doi.org/10.1029/2020JA027963

    Article  Google Scholar 

  • Alken P, Chulliat A, Maus S (2013) Longitudinal and seasonal structure of the ionospheric equatorial electric field. J Geophys Res Space Phys 118:1298–1305. https://doi.org/10.1029/2012JA018314

    Article  Google Scholar 

  • Appleton EV (1946) Two anomalies in the ionosphere. Nature 157:691

    Article  Google Scholar 

  • Bagiya MS, Josh HP, Iyer KN, Aggarwal M, Ravindran S, Pathan BM (2009) TEC variations during low solar activity periods (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann Geophys 27:1047–1057

    Article  Google Scholar 

  • Balan N, Bailey GJ (1995) Equatorial plasma fountain and its effects: possibility of an additional Layer. J Geophys Res 100:21421–21432. https://doi.org/10.1029/95JA01555

    Article  Google Scholar 

  • Bolaji OS, Adeniyi JO, Radicella SM, Doherty PH (2013) Variability of total electron content over an equatorial West African station during low solar activity. Radio Sci 47:RS1001. https://doi.org/10.1029/2011RS004812

    Article  Google Scholar 

  • Burke WJ, Gentile LC, Huang CY, Valladares CE, Su SY (2004) Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J Geophys Res 109:A12301. https://doi.org/10.1029/2004JA010583

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81:111–120

    Article  Google Scholar 

  • Duncan RA (1960) The equatorial F-region of the ionosphere. J Atmos Terr Phys 18:89–100

    Article  Google Scholar 

  • Eyelade VA, Adewale AO, Akala AO, Bolaji OS, Rabiu BA (2017) Studying the variability in the diurnal and seasonal variations in GPS TEC over Nigeria. Ann Geophys 35:701–2017

    Article  Google Scholar 

  • Fayose RF, Rabiu B, Oladosu O, Groves K (2012) Variation of total electron content (TEC) and their effect on GNSS over Akure, Nigeria. Appl Phys Res 4(2):105–109

    Google Scholar 

  • Fejer BG (1991) Low latitude electrodynamics plasma drifts: a review. J Atmos Terr Phys 53:677–693. https://doi.org/10.1016/0021-9169(91)90121-M

    Article  Google Scholar 

  • Fuller-Rowell TJ (1998) The “thermospheric spoon”: a mechanism for the semiannual density variation. J Geophys Res 103:3951–3956

    Article  Google Scholar 

  • Gentile LC, Burke WJ, Roddy PA, Retterer JM, Tsunoda RT (2011) Climatology of plasma density depletions observed by DMSP in the dawn sector. J Geophys Res 116:A03321. https://doi.org/10.1029/2010JA016176

    Article  Google Scholar 

  • Hanson WB, Moffett RJ (1966) Ionization transport effects in the equatorial F region. J Geophys Res 71(23):5559–5572

    Article  Google Scholar 

  • Hei MA, Heelis RA, McClure JP (2005) Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions. J Geophys Res 110:A12315. https://doi.org/10.1029/2005JA011153

    Article  Google Scholar 

  • Hunsucker RD, Hargreaves JK (1995) The high latitude Ionosphere and its effect on radio propagation. Cambridge University Press, Cambridge

    Google Scholar 

  • Klobuchar J (1996) Ionospheric effects on GPS. Glob Position Syst Theory Appl 1:485–515

    Google Scholar 

  • Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21:2083–2093. https://doi.org/10.5194/angeo-21-2083-2003

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the earth’s ionosphere total electron content using the GPS global network. In: Proceedings of ION GPS- 93, institute of navigation. pp 1323–1332

  • Mitra SK (1946) Geomagnetic control of region F2 of the ionosphere. Nature 158:668–669

    Article  Google Scholar 

  • Mungufeni P, Samireddipalle S, Migoya-Orué Y, Kim YH (2020) Modeling total electron content derived from radio occultation measurements by COSMIC satellites over the African Region. Ann Geophys. https://doi.org/10.5194/angeo-2019-160

    Article  Google Scholar 

  • Nigussie M et al (2016) Validation of NeQuick TEC data ingestion technique against C/NOFS and EISCAT electron density measurements. Radio Sci 51(7):905–917

    Article  Google Scholar 

  • Obrou O, Mene NM, Kobea AT, Zaka KZ (2009) Equatorial total electron content (TEC) at low and high solar activity. Adv Space Res 43:1757–1761

    Article  Google Scholar 

  • Okoh D et al (2016) A regional GNSS-VTEC model over Nigeria using neural networks: a novel approach. Geodesy Geodynam 7(1):19–31

    Article  Google Scholar 

  • Okoh D et al (2019) A neural network-based ionospheric model over Africa from constellation observing system for meteorology, ionosphere, and climate and ground global positioning system observations. J Geophys Res Space Phys. https://doi.org/10.1029/2019JA027065

    Article  Google Scholar 

  • Olwendo OJ et al (2012) Characterization of ionospheric GPS Total Electron Content (GPS-TEC) in low latitude zone over the Kenyan region during a very low solar activity phase. J Atmos Solar Terr Phys 84:52–61

    Article  Google Scholar 

  • Oyedokun OJ, Akala AO, Oyeyemi EO (2020) Characterization of African Equatorial Ionization Anomaly (EIA) during the maximum phase of solar cycle 24. J Geophys Res Space Phys. https://doi.org/10.1029/2019ja027066

    Article  Google Scholar 

  • Rishbeth H (2000) The equatorial F-layer: progress and puzzles. Ann Geophys 18:730–739

    Article  Google Scholar 

  • Rishbeth H, Lyon AJ, Peart M (1963) Diffusion in the equitorial F layer. J Geophys 68:2559–2569. https://doi.org/10.1029/JZ068i009p02559

    Article  Google Scholar 

  • Rishbeth H, Muller-Wodarg ICF, Zou L, Fuller-Rowell TJ, Millward GH, Moffett RJ, Idenden DW, Aylward AD (2000) Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann Geophys 18(8):927–944. https://doi.org/10.1007/s00585-000-0927-8

    Article  Google Scholar 

  • Seemala GK, Valladares CE (2011) Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci 46:RS5019. https://doi.org/10.1029/2011RS004722

    Article  Google Scholar 

  • Titheridge JE (1995) Winds in the ionosphere—a review. J Atmos Terr Phys 57:1681–1714

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge University NAVSTAR Consortium, UNAVCO (http://unavco.org/) for making the GNSS data available online. The authors thank Dr. G. K. Seemala for making the GPS-TEC analysis software available to the scientists/researchers. The authors thank the editor and the reviewers for their useful comments and suggestions which have significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Oke-’Ovie Akala.

Ethics declarations

Conflict of interest

There is no conflict of interest as concerning this manuscript.

Additional information

Communicated by Prof. Andrzej Krankowski (ASSOCIATE EDITOR) / Prof. Theodore Karacostas (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akala, A.O’., Oyedokun, O.J. & Bello, D. Seasonal variation of quiet-time TEC over West and Central African equatorial/low-latitude ionosphere (2011–2014). Acta Geophys. 69, 2483–2495 (2021). https://doi.org/10.1007/s11600-021-00679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00679-2

Keywords

Navigation