Skip to main content

Climate change-induced high-altitude lake: Hydrochemistry and area changes of a moraine-dammed lake in Leh-Ladakh

Abstract

Himalayan glaciers are retreating, and glacial lakes are evolving and proliferating as a result of climate change. Glacier retreat marks in the formation and expansion, and sometimes outburst of moraine-dammed lakes. Lato Lake is one of the high-altitude and unexplored glacial lakes upstream of Gya-Miru village in the Leh-Ladakh region. This study is the first of its kind to assess hydrogeochemistry (HCO3−, SO42−, NO3, Cl, F, Ca2+, Mg2+, Na+, and K+) and studying the dynamics of a moraine-dammed lake in the Ladakh Himalayas. We observed substantial expansion of Lato Lake over the past 50 years between 1969 and 2019, and the areas of the lake have increased while the glacier area is reduced by 16.4% and 4.15%, respectively. The pH values ranging from 7.6 to 8.1 show slightly alkaline. HCO3, Ca2+, and SO42− were the most dominant ions during the study period 2018–19. The high (Ca2+  + Mg2+) and a low (Na+  + K+) ratio to the total cations show that Lato Lake receives ions from rock weathering, primarily from carbonate rocks. Gibbs and Na-Mixing plot also support the hydrogeochemistry of lake water was primarily controlled by rock weathering. HYSPILT backward trajectory model suggested that atmospheric input mainly originated from the seawater vapor transported by the summer monsoonal and westerly circulation systems. Results show that the lake has a substantial impact on the long-range transport of ocean water relative to local interferences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

source in the study area

Fig. 10
Fig. 11

References

  1. Ahmad T, Khanna PP, Chakrapani GJ, Balakrishnan S (1998) Geochemical characteristics of water and sediment of the Indus River, Trans-Himalaya, India: constraints on weathering and erosion. J Asian Earth Sci 16(2–3):333–346. https://doi.org/10.1016/S0743-9547(98)00016-6

    Article  Google Scholar 

  2. Allen SK, Linsbauer A, Randhawa SS, Huggel C, Rana P, Kumari A (2016) Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats. Nat Hazards 84(3):1741–1763. https://doi.org/10.1007/s11069-016-2511-x

    Article  Google Scholar 

  3. Allen S, Sattar A, King O, Zhang G, Bhattacharya A, Yao T, Bolch T (2021) Glacial lake outburst flood hazard under current and future conditions: first insights from a transboundary Himalayan basin. Nat Hazards and Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2021-167

    Article  Google Scholar 

  4. Anshumali RAL (2007) Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh, India. Appl Geochem 22:1736–1747. https://doi.org/10.1016/j.apgeochem.2007.03.045

    Article  Google Scholar 

  5. APHA (2005) Standard methods for the examination of water and wastewater. APHA Washington DC, USA

  6. Azam MF, Kargel JS, Shea JM, Nepal S, Haritashya UK, Srivastava S, Bahuguna IM (2021) Glaciohydrology of the Himalaya-Karakoram. Science. https://doi.org/10.1126/science.abf3668

    Article  Google Scholar 

  7. Bolch T, Shea JM, Liu S, Azam FM, Gao Y, Gruber S, Zhang Y (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya region. The Hindu Kush Himalaya Assessment. Springer, Cham, pp 209–255

    Chapter  Google Scholar 

  8. Brown G, Sharp M, Tranter M (1996) Subglacial chemical erosion: seasonal variations in solute provenance, Haut Glacier D’ArollaD’Arolla, Valais, Switzerland. Ann Glaciol 22:25–31. https://doi.org/10.3189/1996AoG22-1-25-31

    Article  Google Scholar 

  9. Cao Y, Tang C, Song X, Liu C (2015) Major ion chemistry, chemical weathering, and CO2 consumption in the Songhua River basin, Northeast China. Environ Earth Sci 73(11):7505–7516. https://doi.org/10.1007/s12665-014-3921-2

    Article  Google Scholar 

  10. Cao Y, Tang C, Cao G, Wang X (2016) Hydrochemical zoning: natural and anthropogenic origins of the major elements in the surface water of Taizi River Basin, Northeast China. Environ Earth Sci 75(9):811. https://doi.org/10.1007/s12665-016-5469-9

    Article  Google Scholar 

  11. Dash P, Punia M (2019) Governance and disaster: analysis of land use policy with reference to Uttarakhand flood 2013, India. Int J Disaster Risk Reduct 36:101090. https://doi.org/10.1016/j.ijdrr.2019.101090

    Article  Google Scholar 

  12. Dean JF, Billett MF, Baxter R, Dinsmore KJ, Lessels JS, Street LE, Wookey PA (2016) Biogeochemistry of “pristine” freshwater stream and lake systems in the western Canadian Arctic. Biogeochemistry 130(3):191–213. https://doi.org/10.1007/s10533-016-0252-2

    Article  Google Scholar 

  13. Deka JP, Baruah B, Singh S, Chaudhury R, Prakash A, Bhattacharyya P, Kumar M (2015a) Tracing phosphorous distributions in the surficial sediments of two eastern Himalayan high altitude lakes through sequential extraction, multivariate and HYSPLIT back trajectory analyses. Environ Earth Sci 73(11):7617–7629. https://doi.org/10.1007/s12665-014-3931-0

    Article  Google Scholar 

  14. Deka JP, Tayeng G, Singh S, Hoque RR, Prakash A, Kumar M (2015b) Source and seasonal variation in the major ion chemistry of two eastern Himalayan high altitude lakes. India. Arab J Geosci 8(12):10597–10610. https://doi.org/10.1007/s12517-015-1964-7

    Article  Google Scholar 

  15. Diéguez MC, Bencardino M, García PE, D’Amore F, Castagna J, De Simone F, Sprovieri F (2019) A multi-year record of atmospheric mercury species at a background mountain station in Andean Patagonia (Argentina): temporal trends and meteorological influence. Atmos Environ 214:116819. https://doi.org/10.1016/j.atmosenv.2019.116819

    Article  Google Scholar 

  16. Fujita K, Sakai A, Nuimura T, Yamaguchi S, Sharma RR (2009) Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ Res Lett 4(4):045205. https://doi.org/10.1088/17489326/4/4/045205/meta

    Article  Google Scholar 

  17. Fujita K, Sakai A, Takenaka S, Nuimura T, Surazakov AB, Sawagaki T, Yamanokuchi T (2013) Potential flood volume of Himalayan glacial lakes. Nat Hazard 13(7):1827–1839. https://doi.org/10.5194/nhess-13-1827-2013

    Article  Google Scholar 

  18. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  Google Scholar 

  19. Gurung DR, Khanal NR, Bajracharya SR, Tsering K, Joshi S, Tshering P, Penjor T (2017) Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: cause and impact. Geoenviron Disasters 4(1):1–13. https://doi.org/10.1186/s40677-017-0080-2

    Article  Google Scholar 

  20. Gurung S, Gurung A, Sharma CM, Jüttner I, Tripathee L, Bajracharya RM, Guo J (2018) Hydrochemistry of Lake Rara: a high mountain lake in western Nepal. Lakes Reserv Res Manag 23(2):87–97. https://doi.org/10.1111/lre.12218

    Article  Google Scholar 

  21. Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, & Zhang Y (2019) High mountain areas, 131–202.

  22. Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, Kääb A (2021) Accelerated global glacier mass loss in the early twenty-first century. Nature 592(7856):726–731. https://doi.org/10.1038/s41586-021-03436-z

    Article  Google Scholar 

  23. International Centre for Integrated Mountain Development (2011) Glacial lakes and glacial lake outburst floods in Nepal. ICIMOD, Kathmandu, Nepal, p 99

    Google Scholar 

  24. Jiang L, Yao Z, Liu Z, Wang R, Wu S (2015) Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J Geochem Explor 155:76–83. https://doi.org/10.1016/j.gexplo.2015.04.009

    Article  Google Scholar 

  25. Kaphle B, Wang JB, Kai JL, Lyu XM, Paudayal KN, Adhikari S (2021) Hydrochemistry of Rara Lake: a Ramsar lake from the southern slope of the central Himalayas, Nepal. J Mt Sci 18(1):141–158. https://doi.org/10.1007/s11629-019-5910-0

    Article  Google Scholar 

  26. Karlsson JM, Jaramillo F, Destouni G (2015) Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J Hydrol 529:134–145. https://doi.org/10.1016/j.jhydrol.2015.07.005

    Article  Google Scholar 

  27. Khadka UR, Ramanathan AL (2013) Major ion composition and seasonal variation in the Lesser Himalayan lake: case of Begnas Lake of the Pokhara Valley, Nepal. Arab J Geosci 6(11):4191–4206. https://doi.org/10.1007/s12517-012-0677-4

    Article  Google Scholar 

  28. Khadka UR, Ramanathan AL (2020) Hydrogeochemical analysis of Phewa lake: a lesser Himalayan lake in the Pokhara Valley, Nepal. Environ Nat Resour J 19(1):68–83. https://doi.org/10.32526/ennrj/19/2020083

    Article  Google Scholar 

  29. Kosek K, Ruman M (2021) Arctic freshwater environment altered by the accumulation of commonly determined and potentially new POPs. Water 13(13):1739. https://doi.org/10.3390/w13131739

    Article  Google Scholar 

  30. Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Chaudhary H (2019) Hydro-geochemical characteristics of glacial meltwater from Naradu Glacier catchment, Western Himalaya. Environ Earth Sci 78(24):1–12. https://doi.org/10.1007/s12665-019-8687-0

    Article  Google Scholar 

  31. Kumar O, Ramanathan AL, Bakke J, Kotlia BS, Shrivastava JP, Kumar P, Kumar P (2020) Role of Indian summer monsoon and Westerlies on glacier variability in the Himalaya and East Africa during late quaternary: review and new data. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103431

    Article  Google Scholar 

  32. Kumar B, Murugesh Prabhu TS (2012) Impacts of climate change: Glacial Lake outburst floods (GLOFs). Climate Change in Sikkim Patterns, Impacts and Initiatives. Inf Public Relat Dep, Gov Sikkim, Gangtok, 81–102.

  33. Li Z, Xu J, Shilpakar RL, Ma X (2014) Mapping wetland cover in the greater Himalayan region: a hybrid method combining multispectral and ecological characteristics. Environ Earth Sci 71(3):1083–1094. https://doi.org/10.1007/s12665-013-2512-y

    Article  Google Scholar 

  34. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313(1–3):77–89. https://doi.org/10.1016/s0048-9697(02)00683-6

    Article  Google Scholar 

  35. Majeed U, Rashid I, Sattar A, Allen S, Stoffel M, Nüsser M, Schmidt S (2021) Recession of gya glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India. Sci Total Environ 756:144008. https://doi.org/10.1016/j.scitotenv.2020.144008

    Article  Google Scholar 

  36. Nüsser M, Schmidt S, Dame J (2012) Irrigation and development in the Upper Indus Basin: characteristics and recent changes of a socio-hydrological system in Central Ladakh, India. Mt Res Dev 32(1):51–61. https://doi.org/10.1659/MRD-JOURNAL-D-11-00091.1

    Article  Google Scholar 

  37. Nüsser M, Dame J, Parveen S, Kraus B, Baghel R, Schmidt S (2019) Cryosphere-fed irrigation networks in the northwestern Himalaya: precarious livelihoods and adaptation strategies under the impact of climate change. Mt Res Dev 39(2):R1–R11. https://doi.org/10.1659/MRD-JOURNAL-D-18-00072.1

    Article  Google Scholar 

  38. Ollivier P, Hamelin B, Radakovitch O (2010) Seasonal variations of physical and chemical erosion: A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta 74(3):907–927

    Article  Google Scholar 

  39. Osmaston, H. (2001). The geology, geomorphology and Quaternary history of Zanskar. Himalayan Buddhist Villages, 1–36.

  40. Pacheco Castro R, Pacheco Ávila J, Ye M, Cabrera Sansores A (2018) Groundwater quality: analysis of its temporal and spatial variability in a Karst Aquifer. Groundwater 56(1):62–72. https://doi.org/10.1111/gwat.12546

    Article  Google Scholar 

  41. Pandey P, Ali SN, Ray PKC (2021) Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994–2017). J Earth Sci. https://doi.org/10.1007/s12583-020-1056-9

    Article  Google Scholar 

  42. Pant RR, Zhang F, Rehman FU, Wang G, Ye M, Zeng C, Tang H (2018) Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci Total Environ 622–623:770–782. https://doi.org/10.1016/j.scitotenv.2017.12.063

    Article  Google Scholar 

  43. Patel LK, Sharma P, Laluraj CM, Thamban M, Singh A, Ravindra R (2017) A geospatial analysis of Samudra Tapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya. Nat Hazards 86(3):1275–1290. https://doi.org/10.1007/s11069-017-2743-4

    Article  Google Scholar 

  44. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans Am Geophys Union 25(6):914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  45. Potapowicz J, Szumińska D, Szopińska M, Bialik RJ, Machowiak K, Chmiel S, Polkowska Ż (2020) Seashore sediment and water chemistry at the Admiralty Bay (King George Island, Maritime Antarctica)–Geochemical analysis and correlations between the concentrations of chemical species. Mar Pollut Bull 152:110888. https://doi.org/10.1016/j.marpolbul.2020.110888

    Article  Google Scholar 

  46. Prakash ANJAL (2020) Retreating glaciers and water flows in the Himalayas: implications for governance. Obs Res Found, New Delhi, India 400:1–14

    Google Scholar 

  47. Pritchard HD (2019) Asia’s shrinking glaciers protect large populations from drought stress. Nature 569(7758):649–654. https://doi.org/10.1038/s41586-019-1240-1

    Article  Google Scholar 

  48. Racoviteanu A, Paul F, Raup B, Khalsa S, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 global land ice measurements from space (GLIMS) workshop, Boulder, Colorado, USA. Ann Glaciol 50(53):53–69. https://doi.org/10.3189/172756410790595804

    Article  Google Scholar 

  49. Roberts KE, Lamoureux SF, Kyser TK, Muir DCG, Lafrenière MJ, Iqaluk D, Normandeau A (2017) Climate and permafrost effects on the chemistry and ecosystems of High Arctic Lakes. Sci Rep 7(1):1–8. https://doi.org/10.1038/s41598-017-13658-9

    Article  Google Scholar 

  50. Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display sYstem: READY. Environ Model Softw 95:210–228. https://doi.org/10.1016/j.envsoft.2017.06.025

    Article  Google Scholar 

  51. Rounce DR, Hock R, Shean DE (2020) Glacier mass change in high mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM). Front Earth Sci 7:331. https://doi.org/10.3389/feart.2019.00331

    Article  Google Scholar 

  52. Ruman M, Kosek K, Koziol K, Ciepły M, Kozak-Dylewska K, Polkowska Ż (2021) A High-Arctic flow-through lake system hydrochemical changes: revvatnet, southwestern Svalbard (years 2010–2018). Chemosphere 275:130046. https://doi.org/10.1016/j.chemosphere.2021.130046

    Article  Google Scholar 

  53. Sakai A (2012) Glacial lakes in the Himalayas: a review on formation and expansion processes. Glob Environ Res 16(2011):23–30

    Google Scholar 

  54. Salerno F, Rogora M, Balestrini R, Lami A, Tartari GA, Thakuri S, Tartari G (2016) Glacier melting increases the solute concentrations of Himalayan glacial lakes. Environ Sci Technol 50(17):9150–9160. https://doi.org/10.1021/acs.est.6b02735

    Article  Google Scholar 

  55. Schild A (2008) ICIMOD’s ICIMOD’s position on climate change and mountain systems. Mt Res Dev 28(3/4):328–331. https://doi.org/10.1659/mrd.mp009

    Article  Google Scholar 

  56. Schlup M, Carter A, Cosca M, Steck A (2003) Exhumation history of eastern Ladakh revealed by 40 Ar/ 39 Ar and fission-track ages: the Indus River-Tso Morari transect, NW Himalaya. J Geol Soc 160(3):385–399. https://doi.org/10.1144/0016-764902-084

    Article  Google Scholar 

  57. Schmidt S, Nüsser M, Baghel R, Dame J (2020) Cryosphere hazards in Ladakh: the 2014 Gya glacial lake outburst flood and its implications for risk assessment. Nat Hazards 104(3):2071–2095. https://doi.org/10.1007/s11069-020-04262-8

    Article  Google Scholar 

  58. Sharma P, Ramanathan AL, Pottakkal J (2013) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092

    Article  Google Scholar 

  59. Shugar DH, Burr A, Haritashya UK, Kargel JS, Watson CS, Kennedy MC, Strattman K (2020) Rapid worldwide growth of glacial lakes since 1990. Nat Clim Chang 10(10):939–945. https://doi.org/10.1038/s41558-020-0855-4

    Article  Google Scholar 

  60. Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, Westoby MJ (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science. https://doi.org/10.1126/science.abh4455

    Article  Google Scholar 

  61. Shukla A, Garg PK, Srivastava S (2018) Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya over the past four decades (1975–2017). Front Environ Sci 6:81. https://doi.org/10.3389/fenvs.2018.00081

    Article  Google Scholar 

  62. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-A case study. Water Res 38(18):3980–3992. https://doi.org/10.1016/j.watres.2004.06.011

    Article  Google Scholar 

  63. Singh VB, Ramanathan AL, Pottakkal JG, Sharma P, Linda A, Azam MF, Chatterjee C (2012) Chemical characterization of meltwater draining from Gangotri glacier, Garhwal Himalaya, India. J Earth Syst Sci 121(3):625–636. https://doi.org/10.1007/s12040-012-0177-7

    Article  Google Scholar 

  64. Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014a) Seasonal Variation of Solute and Suspended Sediment Load in Gangotri Glacier Meltwater, Central Himalaya, India. J Asian Earth Sci 79:224–234. https://doi.org/10.1016/j.jseaes.2013.09.010

    Article  Google Scholar 

  65. Singh Y, Khattar JIS, Singh DP, Rahi P, Gulati A (2014) Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J Biosci 39(4):643–657

    Article  Google Scholar 

  66. Singh VB, Ramanathan AL, Mandal A (2016) Hydrogeochemistry of high-altitude lake: a case study of the Chandra Tal, Western Himalaya. India Arab J Geosci 9(4):308. https://doi.org/10.1007/s12517-016-2358-1

    Article  Google Scholar 

  67. Slukovskii Z, Dauvalter V, Guzeva A, Denisov D, Cherepanov A, Siroezhko E (2020) The hydrochemistry and recent sediment geochemistry of small lakes of Murmansk, Arctic Zone of Russia. Water 12(4):1130. https://doi.org/10.3390/w12041130

    Article  Google Scholar 

  68. Soheb M, Ramanathan A, Angchuk T, Mandal A, Kumar N, Lotus S (2020) Mass-balance observation, reconstruction, and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. J Glaciol 66(258):627–642. https://doi.org/10.1017/jog.2020.34

    Article  Google Scholar 

  69. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteor Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  70. Steingruber SM, Bernasconi SM, Valenti G (2020) Climate change-induced changes in the chemistry of a high-altitude mountain lake in the central alps. Aquat Geochem. https://doi.org/10.1007/s10498-020-09388-6

    Article  Google Scholar 

  71. Stumm W, Morgan JJ (1981) Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley-Interscience Publication, p 780

    Google Scholar 

  72. Sun H, Han J, Li D, Zhang S, Lu X (2010) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci Total Environ 408(20):4749–4760. https://doi.org/10.1016/j.scitotenv.2010.06.007

    Article  Google Scholar 

  73. Szopińska M, Szumińska D, Bialik RJ, Chmiel S, Plenzler J, Polkowska Ż (2018) Impact of a newly-formed periglacial environment and other factors on freshwater chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica). Sci Total Environ 613:619–634. https://doi.org/10.1016/j.scitotenv.2017.09.060

    Article  Google Scholar 

  74. Thakuri S, Salerno F, Bolch T, Guyennon N, Tartari G (2016) Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal. Annals of Glaciol 57(71):245–257. https://doi.org/10.3189/2016AoG71A063

    Article  Google Scholar 

  75. Veh G, Korup O, von Specht S, Roessner S, Walz A (2019) Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat Climate Change 9(5):379–383. https://doi.org/10.1038/s41558-019-0437-5

    Article  Google Scholar 

  76. Veh G, Korup O, Walz A (2020) Hazard from Himalayan glacier lake outburst floods. Proc Natl Acad Sci 117(2):907–912. https://doi.org/10.1073/pnas.1914898117

    Article  Google Scholar 

  77. Wadham JL, Hodson AJ, Tranter M, Dowdeswell JA (1998) The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: i the ablation season. Hydrol Process 12(12):1825–1849. https://doi.org/10.1002/(SICI)10991085(19981015)12:12%3C1825:AIDHYP669%3E3.3.CO;2-I

    Article  Google Scholar 

  78. Wadham JL, Cooper RJ, Tranter M, Hodgkins R (2001) Enhancement of glacial solute fluxes in the pro-glacial zone of a polythermal glacier. J Glaciol 47(158):378–386. https://doi.org/10.3189/172756501781832188

    Article  Google Scholar 

  79. Woelders L, Lenaerts JT, Hagemans K, Akkerman K, van Hoof TB, Hoek WZ (2018) Recent climate warming drives ecological change in a remote high-Arctic lake. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-25148-7

    Article  Google Scholar 

  80. Zhang S-R, Lu XX, Higgitt DL, Chen C-TA, Sun H-G, Han J-T (2007) Water chemistry of the Zhujiang (Pearl River): Natural processes and anthropogenic influences. J Geophys Res 112(F1):F01011. https://doi.org/10.1029/2006JF000493

    Article  Google Scholar 

  81. Zhang Z, Jia W, Zhu G, Ma X, Xu X, Yuan R, Xiong H (2020) Hydrochemical characteristics and ion sources of precipitation in the upper reaches of the shiyang river. China Water 12(5):1442. https://doi.org/10.3390/w12051442

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor A.L Ramanathan, Chandranath Chatterjee, and Jawaharlal Nehru University, New Delhi, for providing all the facilities to carrying out this work. The authors are grateful to Central Instruments Facility-School of Environmental Science, Jawaharlal Nehru University, New Delhi, for providing the facilities to analyze the samples.

Funding

This work was financially supported by National Centre for Polar and Ocean Research (NCPOR) under the HiCOM project (PAC-SES-ALR_NCPOR- (MoES) 03180321–1108/ Sanction Order no. 721/2018) and the Ministry of Earth Sciences (MoES) Government of India.

Author information

Affiliations

Authors

Contributions

HK, ALR, MS, and MSS conceptualized the study. ALR supervised the study. HK, KB, CS, and AM performed the analysis, developed the figures, and wrote the paper. All authors contributed significantly in fieldwork and to improve the draft manuscript.

Corresponding author

Correspondence to AL. Ramanathan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Prof. Robert Bialik, (ASSOCIATE EDITOR), Dr. Michael Nones, (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaushik, H., Ramanathan, A., Soheb, M. et al. Climate change-induced high-altitude lake: Hydrochemistry and area changes of a moraine-dammed lake in Leh-Ladakh. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00670-x

Download citation

Keywords

  • Moraine-dammed Lake
  • Major ions
  • Weathering
  • Hydrogeochemistry