Skip to main content

Crustal structure and magmatic system of Isla Socorro (Eastern Pacific Ocean), derived from the interpretation of geological–geophysical data

Abstract

Isla Socorro is an oceanic island located in the Eastern Pacific Ocean, at the junction of the Clarion Fracture Zone and Mathematician Ridge, approximately 600 km west of the Mexican coastline. Very little is known about the submarine portion of the island, but based on the oldest subaerial deposits, it is inferred to be primarily a basaltic shield cone. In this study, the subsurface structure of Isla Socorro was analysed based on an integration of geological and geophysical data. The geophysical data consist of high-resolution airborne magnetic data as well as an integration of terrestrial gravity and high-resolution satellite gravity. The study revealed important information about the composition, structure and origin of the volcanic edifice. The analysis and interpretation of the gravity and magnetic data indicate the existence of extensional systems associated to the principal tectonic structures of the Revillagigedo area. The horizontal gradient and Euler deconvolution of magnetic data reveal the presence of curved features interpreted as caldera structures. A central, vertically extensive body low in both density and magnetic susceptibility was identified through the 2D forward and 3D inverse modelling techniques. This body could represent a high-temperature zone above the Curie point, thus, we propose this body as a remnant magma reservoir and the source of the most recent volcanic activity from subaerial Socorro, and indicates that the possibility of a future large volume eruption from the summit cannot be ruled out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abderbi J, Khattach D, Kenafi J (2016) Multiscale analysis of the geophysical lineaments of the High Plateaus (Eastern Marocco): structural implications. J Mater Environ Sci 8(2):467–475

    Google Scholar 

  2. Alvarez R, Corbo-Camargo F, Yutsis V (2017) Geophysical modelling of Isla Isabel: a volcanic island on the Mexican continental margin. In: Németh K, Carrasco-Núñez G, Aranda-Gómez JJ, Smith IEM (eds) Monogenetic volcanism, Special Publications, vol 446. Geological Society, London, pp 295–310. https://doi.org/10.1144/SP446.13

  3. Araña V, Camacho AG, Garcia A, Montesinos FG, Blanco I, Vieira R, Felpeto A (2000) Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic and volcanological data. J Volcanol Geoth Res 103(1–4):43–64

    Article  Google Scholar 

  4. Baker PE (1974) Peralkaline acid volcanic rocks of oceanic islands. Bull Volcanol 38:737–754. https://doi.org/10.1007/BF02596906

    Article  Google Scholar 

  5. Batiza R, Vanko D (1985) Petrologic evolution of large failed rifts in the eastern Pacific: petrology of volcanic and plutonic rocks from the Mathematician Ridge area and the Guadelupe Trough. J Petrol 26:564–602

    Article  Google Scholar 

  6. Beier C, Haase KM, Hansteen TH (2006) Magma evolution of the Sete Cidades Volcano, São Miguel, Azores. J Petrol 47(7):1375–1411

    Article  Google Scholar 

  7. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494–1498. https://doi.org/10.1190/1.1442197

    Article  Google Scholar 

  8. Blanco-Montenegro I, De Ritis R, Chiappini M (2007) Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bull Volcanol 69(6):643–659. https://doi.org/10.1007/s00445-006-0100-7

    Article  Google Scholar 

  9. Blanco-Montenegro I, Montesinos FG, Arnoso J (2018) Aeromagnetic anomalies reveal the link between magmatism and tectonics during the early formation of the Canary Islands. Sci Rep 8:42. https://doi.org/10.1038/s41598-017-18813-w

    Article  Google Scholar 

  10. Blanco-Montenegro I, Montesinos FG, García A, Vieira R, Villalaín JJ (2005) Paleomagnetic determinations on Lanzarote from magnetic and gravity anomalies: implications for the early history of the Canary Islands. J Geophys Res Solid Earth 110:B12. https://doi.org/10.1029/2005JB003668

    Article  Google Scholar 

  11. Blanco-Montenegro I, Nicolosi I, Pignatelli A, García A, Chiappini M (2011) New evidence about the structure and growth of ocean island volcanoes from aeromagnetic data: the case of Tenerife, Canary Islands. J Geophys Res 116:B03102. https://doi.org/10.1029/2010JB007646

    Article  Google Scholar 

  12. Bohrson WA, Reid MR (1995) Petrogenesis of alkaline basalts from Socorro Island, Mexico: trace element evidence for contamination of ocean island basalt in the shallow ocean crust. J Geophys Res 100:24555–24576

    Article  Google Scholar 

  13. Bohrson WA, Reid MR (1997) Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open–system processes: Socorro Island, Mexico. J Petrol 38:1137–1166. https://doi.org/10.1093/petroj/38.9.1137

    Article  Google Scholar 

  14. Bohrson WA, Reid MR (1998) Genesis of evolved ocean island magmas by deep- and shallow-level basement recycling, Socorro Island, Mexico: constraints from Th and other isotope signatures. J Petrol 39:995–1008. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.579.7306&rep=rep1&type=pdf

  15. Bohrson WA, Reid MR, Grunder AL, Heizler MT, Harrison TM, Lee J (1996) Prolonged history of silicic peralkaline volcanism in the eastern Pacific Ocean. J Geophys Res 101:11457–11474. https://doi.org/10.1029/96JB00329

    Article  Google Scholar 

  16. Briole P, Willis P, Dubois J, Charade O (2009) Potential volcanological applications of the DORIS system. A geodetic study of the Socorro Island (Mexico) coordinate time-series. Geophys J Int 178:581–590

    Article  Google Scholar 

  17. Bryan WB (1964) Relative abundance of intermediate members of the oceanic basalt-trachyte association: evidence from Clarion and Socorro lslands, Revillagigedo lslands, Mexico. J Geophys Res 69:3047–3049

    Article  Google Scholar 

  18. Bryan WB (1966) History and mechanism of eruption of soda-rhyolite and alkali basalt, Socorro Island, Mexico. Bull Volc 29:453–480

    Article  Google Scholar 

  19. Bryan WB (1967) Geology and petrology of Clarion lsland, Mexico. Geol Soc Am Bull 78:1461–1476

    Article  Google Scholar 

  20. Bryan WB (1970) Alkaline and peralkaline rocks of Socorro Island, Mexico. Carnegie Inst Wash Yearb 68:194–200

    Google Scholar 

  21. Bryan WB (1976) A basalt-pantellerite association from Isla Socorro, Islas Revillagigedo, Mexico. In: Aoki H, Iizuka S (eds) Volcanoes and tectonosphere. Tokai University Press, Tokyo, Japan, pp 75–91

    Google Scholar 

  22. Carballido-Sanchez EA (1994) The geology and petrology of Socorro Island, Revillagigedo Archipelago, Mexico. PhD Thesis, Tulane University

  23. Carmo R, Madeira J, Ferreira T, Queiroz G, Hipólito A (2015) “Volcanotectonic structures of São Miguel Island, Azores,” in Volcanic Geology of São Miguel Island (Azores Archipelago)

  24. Chenrai P, Meyers J and Charusiri P 2010. Euler deconvolution technique for gravity survey. J Appl Sci Res, 6 (11): 1891–1897. http://www.eatgru.sc.chula.ac.th

  25. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591. https://doi.org/10.1016/j.cageo.2006.02.016

    Article  Google Scholar 

  26. DeMets C, Traylen S (2000) Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. Tectonophysics 318:119–159

    Article  Google Scholar 

  27. Escanero-Figueroa E (1986) Profundidad media estimada de perfiles espectrales gravimétricos. Tesis Ing. Geofísico, Universidad Nacional Autónoma de México, Facultad de Ingeniería, UNAM. Retrieved from https://repositorio.unam.mx/contenidos/3460855

  28. Escorza Reyes M (2010) Magnetometría de la Isla Socorro, Archipiélago de las Revillagigedo. Tesis Ing. Geofísico Universidad Nacional Autónoma de México, Facultad de Ingeniería, UNAM. Retrieved from https://repositorio.unam.mx/contenidos/3437913

  29. Farmer JD, Farmer MC, Berger R (1993) Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island Mexico. Radiocarbon 35(2):253–262. https://doi.org/10.1017/S0033822200064924

    Article  Google Scholar 

  30. Favela J, Anderson DL (2000) Extensional tectonics and global volcanism. Problems in geophysics for the new millennium. Editrice Compositori, Bologna, Italy, pp 463–498

    Google Scholar 

  31. Fedi M, Rapolla A (1999) 3-D inversion of gravity and magnetic data with depth resolution. Geophysics 64:452–460. https://doi.org/10.1190/1.1444550

    Article  Google Scholar 

  32. Garcia A, Blanco I, Torta JM, Socias I (1999) High-resolution aeromagnetic survey of the Teide volcano (Canary Islands): a preliminary analysis. Ann Geophys 40:329–359

    Google Scholar 

  33. Gill R. (2010) Igneous Rocks and Processes. A Practical Guide. Wiley-Blackwell. A John Wiley & Sons, Ltd., Publication. ISBN 978-1-4443-3065-6. 428 pp. www.wiley.com/go/gill/igneous

  34. Grauch VJS, Hudson MN, Minor SA (2001) Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico. Geophysics 66:707–720. https://doi.org/10.1190/1.1444961

    Article  Google Scholar 

  35. Hildenbrand TG, Rosenbaum JG, Kauahikaua JP (1993) Aeromagnetic study of the Island of Hawaii. J Geophys Res 98:4099–4119. https://doi.org/10.1029/92JB02483

    Article  Google Scholar 

  36. Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultra-high-resolution picture of Earth’s gravity field. Geophysical Research Letter. https://doi.org/10.1002/grl.50838

    Article  Google Scholar 

  37. Kueppers U, Pimentel A, Ellis B, Forni F, Neukampf J, Pacheco J, Perugini D, Queiroz G (2019) Biased volcanic hazard assessment due to incomplete eruption records on Ocean Islands: an example of Sete Cidades Volcano. Azores Front Earth Sci 7:122

    Article  Google Scholar 

  38. Lewerissa R, Sismanto S, Setiawan A, Pramumijoyo S (2020) The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources. Turkish J Earth Sci 29:596–616. https://doi.org/10.3906/yer-1908-17

    Article  Google Scholar 

  39. Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volc 38:498–505

    Article  Google Scholar 

  40. Magee C, Stevenson CTE, Ebmeier SK, Keir D, Hammond JOS, Gottsmann JH, Whaler KA, Schofield N, Jackson CA-L, Petronis MS, O’Driscoll B, Morgan J, Cruden A, Vollgger SA, Dering G, Micklethwaite S and Jackson MD (2018) Magma plumbing systems: a geophysical perspective. J Petrol, 59(6): 1217–1251. https://academic.oup.com/petrology/advancearticle/doi/https://doi.org/10.1093/petrology/egy064/5043305

  41. Mahood GA (1984) Pyroclastic rocks and calderas associated with strongly peralkaline magmatism. J Geophys Res 89:8540–8552. https://doi.org/10.1029/JB089iB10p08540

    Article  Google Scholar 

  42. Mammerickx J, Klitgord KD (1982) East Pacific rise: evolution from 25 m.y.B.P. to the present. J Geophys Res 87:6751–6758

    Article  Google Scholar 

  43. Mammerickx J, Naar DF, Tyce RL (1988) The mathematician paleoplate. J Geophys Res 93(B4):3025–3040

    Article  Google Scholar 

  44. McVey BG, Hooft EEE, Heath BA, Toomey DR, Paulatto M, Morgan JV, Nomikou P, Papazachos CB (2019) Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology 48(3):231–235. https://doi.org/10.1130/G47127.1

    Article  Google Scholar 

  45. Milsom J, Eriksen A (2011) Field geophysics, 4th edn. UK, Wiley-Blackwell

    Book  Google Scholar 

  46. Mungall JE, Martin RF (1995) Petrogenesis of basalt-comendite and basalt-pantellerite suites, Terceira, Azores, and some implications for the origin of ocean-island rhyolites. Contr Mineral Petrol. 119:43–55. https://link.springer.com/article/10.1007%2FBF00310716

  47. Mussett AE, Khan MA, Button S (2000) Looking into the Earth: an introduction to geological geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517. https://doi.org/10.1190/1.1440276

    Article  Google Scholar 

  49. Nabighian MN (1974) Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics 39(1):85–92. https://doi.org/10.1190/1.1440416

    Article  Google Scholar 

  50. Napoli R, Currenti G (2016) Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures. J Volcanol Geoth Res 320:40–49. https://doi.org/10.1016/j.jvolgeores.2016.04.011

    Article  Google Scholar 

  51. Napoli R, Currenti G, Del Negro C (2007) Internal structure of Ustica volcanic complex (Italy) based on a 3D inversion of magnetic data. Bull 69(8):869–879. https://doi.org/10.1007/s00445-007-0115-8

    Article  Google Scholar 

  52. Pal PC, Khurana KK, Unikrishman P (1979) Two examples of spectral approach to source depth estimation in gravity and magnetics. Pure Appl Geophys 117:772–783

    Article  Google Scholar 

  53. Paoletti V, Gruber S, Varley N, D’Antonio M, Supper R, Motschka K (2015) Insights into the structure and surface geology of Isla Socorro, Mexico, from airborne magnetic and gamma-ray surveys. Surv Geophys 37:601–623

    Article  Google Scholar 

  54. Paulatto M, Moorkamp M, Hautmann S, Hooft E, Morgan JV, Sparks RSJ (2019) Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data. Journal of Geophysical Research: Solid Earth 124(11):11170–11191

    Google Scholar 

  55. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011JB008916

    Article  Google Scholar 

  56. Pavón-Moreno JA (2009) Exploración Gravimétrica en Isla Socorro, Archipiélago de Revillagigedo, México. Tesis Ingeniería Geofísica, Facultad de Ingeniería, UNAM, 65 pp. https://repositorio.unam.mx/contenidos/3540976

  57. Pilkington M, Keating P (2004) Contact mapping from gridded magnetic data—A comparison of techniques. Explor Geophys 35:306–311. https://doi.org/10.1071/EG04306

    Article  Google Scholar 

  58. Phillips JD (1997) Potential-Field Geophysical Software for the PC, version 2.2: USGS open-File Report 97–725

  59. Reeves, C. (2005) Aeromagnetic Surveys: Principles, Practice and Interpretation. Earth- works, Washington DC, 155 p.

  60. Reid AB and Thurston JB (2014) The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics, Vol. 79, No. 4 (July-August 2014); P. J61–J66, 3 Figs., 1 Table. DOI: https://doi.org/10.1190/GEO2013-0235.1

  61. Reid AB, FitzGerald DJ, Mcinerny Ph (2003) Euler deconvolution of gravity data. SEG. https://doi.org/10.13140/2.1.3210.0489

    Article  Google Scholar 

  62. Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  63. Reynolds JM (1997) An introduction to applied and environmental geophysics: John Wiley and Sons. Reynolds Geo-Sciences Ltd, United Kingdom

    Google Scholar 

  64. Richards AF (1959) Geology of the Islas Revillagigedo, Mexico, 1, Birth and development of Volcan Barcena, lsla San Benedicto. Bull. Volcanologique, serie 2, v. 22: 73–123

  65. Richards AF (1964) Geology of the Islas Revillagigedo, Mexico, 4, geology and petrography of lsla Roca Partida. Bull Geol Soc Am 70:1157–1163

    Article  Google Scholar 

  66. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. https://doi.org/10.1029/2008GC002332

    Article  Google Scholar 

  67. Saibi H, Azizi M, Saad Mogren S (2016) Structural investigations of afghanistan deduced from remote sensing and potential field data. Acta Geophys 64(4):978–1003. https://doi.org/10.1515/acgeo-2016-0046

    Article  Google Scholar 

  68. Sbarbori E, Tauxe L, Goguitchaichvili A, Urrutia-Fucugauchi J, Bohrson WA (2009) Paleomagnetic behavior of volcanic rocks from Isla Socorro. Mexico Earth Planets Space 61:191–204

    Article  Google Scholar 

  69. Siebe C, Komorowski JC, Navarro C, McHone J, Delgado H, Cortes A (1995) Submarine eruption near Socorro Island, Mexico: geochemistry and scanning electron microscopy studies of floating scoria and reticulite. J Volcanol Geoth Res 68:239–271

    Article  Google Scholar 

  70. Sinem Ince E, Abrykosov O, Förste Ch, Flechtner F (2020) Forward gravity modelling to augment high-resolution combined gravity field models. Surv Geophys 41:767–804. https://doi.org/10.1007/s10712-020-09590-9

    Article  Google Scholar 

  71. Spector A, Grant F (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  72. Taran YA, Fischer TP, Cienfuegos E, Morales P (2002) Geochemistry of hydrothermal fluids from an intraplate ocean island: Evermann volcano, Socorro Island, Mexico. Chem Geol 188:51–63

    Article  Google Scholar 

  73. Taran YA, Varley NR, Inguaggiato S, Cienfuegos E (2010) Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids 10:542–555

    Article  Google Scholar 

  74. Tedla GE, van der Meijde M, Nyblade AA, van der Meer FD (2011) A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution. Geophys J Int 187:1–9. https://doi.org/10.1111/j.1365-246X.2011.05140.x

    Article  Google Scholar 

  75. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  76. Thompson DT (1982) EULDPH: a new technique for making computer assisted depth estimates from magnetic data. Geophysics 47(1):31–37. https://doi.org/10.1190/1.1441278

    Article  Google Scholar 

  77. Yutsis VV, Varley N, Guzmán Macías RA, Martin AJ (2017) Gravity and magnetic study in Isla Socorro (Revillagigedo archipelago), Mexico. In: Machte B, Holzhayer I, Ifrin C, Stinnegeck W, Glasmacher U (eds) 24th Colloquium on Latin American earth sciences. CAEA heidelbergensis 20

  78. Verduzco B, Fairhead JD, Green CM (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23(2):116–119. https://doi.org/10.1190/1.1651454

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Robert Supper and the Austrian Geological Survey for providing the aeromagnetic data obtained during their survey in 2009. Authors acknowledge the Western Australian Geodesy Group at Curtin University and the Bruce Murray Lab for Planetary Visualizations at California Institute of Technology for providing the 200-m resolution GGMplus gravity model. The authors are grateful to David Torres for his help in the design of the Figures. The authors would like to thank Karoly Nemeth and two anonymous reviewers for their comments, which helped to improve this paper. Also appreciation is given to the Mexican Navy for their help in transport both to and from the island, and to the various field sites.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vsevolod Yutsis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Dr. Salvatore Gambino (ASSOCIATE EDITOR), Prof. Ramon Zuñiga (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tapia, C., Yutsis, V. & Varley, N. Crustal structure and magmatic system of Isla Socorro (Eastern Pacific Ocean), derived from the interpretation of geological–geophysical data. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00652-z

Download citation

Keywords

  • Structure
  • Isla Socorro
  • Gravity and magnetic data
  • 3D inversion model