Skip to main content

Distance attenuation and local magnitude scale based on constant geometrical spreading in Northern Punjab, Pakistan

Abstract

Development and calibration of distance attenuation curve for local seismic data are requisite for better seismo-tectonic modeling and seismic hazard estimation. Local magnitude scale developed for Northern Punjab (Potwar Plateau and Salt Range) has been tested against different geometrical spreading values. Trade-off or linear inter dependence has been observed between local magnitude scale parameters. To address this issue, either nonparametric approach with proper smoothing factor or parametric approach with single parameter (a) as constant may be used. In this study, we fixed geometrical spreading parameter to eliminate parameters dependency and hence reduction in error was achieved. Geometrical spreading was observed to be distance-dependent factor rather than a constant parameter. A variance reduction of 11%, with zero error in anelsatic attenuation parameter was achieved by fixing geometrical parameter and performing parametric inversion. The new magnitude scale with distance correction factor is given by the expression; \(-{\mathrm{log}}A_o = {\mathrm{log}}(R)+0.0006(R)-1.7419\), where R is hypocentral distance, valid for \(R < 130\) km and depth < 30 km. Lower attenuation (i.e., \(b = 0.0006\)) was observed in new magnitude scale as compared to previously developed magnitude scale (i.e., \(b = 0.00115\)) for the same area. The pronounced lower attenuation of seismic waves beneath the intraplate region of Northern Punjab is apparently owes to regional tectonics. Northern Punjab is relatively stable part of the Indian shield with Precambrian basement rock overlaid by varying thickness of salt diapirs and thick sedimentary cover.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Akinci A, Malagnini L, Herrmann RB, Pino NA, Scognamiglio L, Eyidogan H (2001) High-frequency ground motion in the Erzincan Region, Turkey: inferences from small earthquakes. Bull Seismol Soc Am 91(6):1446–1455

    Article  Google Scholar 

  2. Al-Ismail F, Ellsworth WL, Beroza GC (2020) Empirical and synthetic approaches to the calibration of the local magnitude scale, ML, in Southern Kansas. Bull Seismol Soc Am 110(2):689–697

    Article  Google Scholar 

  3. Alsaker A, Kvamme L, Hansen R, Dahle A, Bungum H (1991) The ML scale in Norway. Bull Seismol Soc Am 81(2):379–398

    Google Scholar 

  4. Baker DM (1987) Balanced structural cross-sections of the central salt range and Potwar Plateau of Pakistan: shortening and overthrust deformation. M.S. thesis: Corvallis, Oregon State University, p 120

  5. Baker DM, Lillie RJ, Yeats RS, Johnson GD, Yousuf M, Zamin ASH (1988) Development of the Himalayan frontal thrust zone: Salt Range, Pakistan. Geology 16(1):3–7

    Article  Google Scholar 

  6. Bakun WH (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bull Seismol Soc Am 74(2):439–458

    Article  Google Scholar 

  7. Bakun WH, Joyner WB (1984) The ML scale in central California. Bull Seismol Soc Am 74(5):1827–1843

    Article  Google Scholar 

  8. Banks C, Warburton J (1986) Passive-roof duplex geometry in the frontal structures of the Kirthar and Sulaiman Mountain belts, Pakistan. J Struct Geol 8(3–4):229–237

    Article  Google Scholar 

  9. Baumbach M, Bindi D, Grosser H, Milkereit C, Parolai S, Wang R, Karakisa S, Zunbul S, Zschau J (2003) Calibration of an ML scale in Northwestern Turkey from 1999 Izmit aftershocks. Bull Seismol Soc Am 93(5):2289–2295

    Article  Google Scholar 

  10. Bendick R, McClusky S, Bilham R, Asfaw L, Klemperer S (2006) Distributed Nubia–Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophys J Int 165(1):303–310

    Article  Google Scholar 

  11. Bindi D, Spallarossa D, Eva C, Cattaneo M (2005) Local and duration magnitudes in northwestern Italy, and seismic moment versus magnitude relationships. Bull Seismol Soc Am 95(2):592–604

    Article  Google Scholar 

  12. Bobbio A, Vassallo M, Festa G (2009) A local magnitude scale for Southern Italy. Bull Seismol Soc Am 99(4):2461–2470

    Article  Google Scholar 

  13. Booth DC (2007) An improved UK local magnitude scale from analysis of shear and Lg-wave amplitudes. Geophys J Int 169(2):593–601

    Article  Google Scholar 

  14. Bormann P, Baumbach M, Bock G, Grosser H, Choy GL, Boatwright J (2002) Seismic sources and source parameters, in IASPEI New Manual of Seismological Observatory Practice, vol. 1. chap. 3, p 36, GeoForschungsZentrum Potsdam, Potsdam, Germany

  15. Chapple WM (1978) Mechanics of thin-skinned fold-and-thrust belts. Geol Soc Am Bull 89(8):1189–1198

    Article  Google Scholar 

  16. Chávez DE, Priestley KF (1985) ML observations in the great basin and m 0 versus ml relationships for the 1980 mammoth lakes, California, earthquake sequence. Bull Seismol Soc Am 75(6):1583–1598

    Article  Google Scholar 

  17. Chen L, Khan SD (2010) InSAR observation of the strike-slip faults in the northwest Himalayan frontal thrust system. Geosphere 6(5):731–736

    Article  Google Scholar 

  18. Cheng HX, Kennett B (2002) Frequency dependence of seismic wave attenuation in the upper mantle beneath the Australian region. Geophys J Int 150(1):45–57

    Article  Google Scholar 

  19. Dahlen F (1984) Noncohesive critical coulomb wedges: an exact solution. J Geophys Res 89(B12):10125–10133

    Article  Google Scholar 

  20. Dahlen F, Suppe J, Davis D (1984) Mechanics of fold-and-thrust belts and accretionary wedges: cohesive coulomb theory. J Geophys Res 89(B12):10087–10101

    Article  Google Scholar 

  21. D’Amico S, Akinci A, Malagnini L (2012) Predictions of high-frequency ground-motion in Taiwan based on weak motion data. Geophys J Int 189(1):611–628

    Article  Google Scholar 

  22. Davis D, Suppe J, Dahlen F (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88(B2):1153–1172

    Article  Google Scholar 

  23. Davis DM, Engelder T (1985) The role of salt in fold-and-thrust belts. Tectonophysics 119(1–4):67–88

    Article  Google Scholar 

  24. Deichmann N (2017) Theoretical basis for the observed break in ML/Mw scaling between small and large earthquakes. Bull Seismol Soc Am 107(2):505–520

    Article  Google Scholar 

  25. Deichmann N (2018a) The relation between ME, ML and Mw in theory and numerical simulations for small to moderate earthquakes. J Seismol 22(6):1645–1668

    Article  Google Scholar 

  26. Deichmann N (2018b) Why does ML scale 1:1 with 0.5logES? Seismol Res Lett 89(6):2249–2255

    Google Scholar 

  27. Del Pezzo E, Petrosino S (2001) A local-magnitude scale for Mt. Vesuvius from synthetic Wood-Anderson seismograms. J Seismol 5(2):207–215

    Article  Google Scholar 

  28. Gansser A (1964) Geology of the Himalayas. Wiley Interscience, New York, pp 289

  29. Greenhalgh S, Singh R (1986) A revised magnitude scale for south Australian earthquakes. Bull Seismol Soc Am 76(3):757–769

    Google Scholar 

  30. Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570

    Article  Google Scholar 

  31. Havskov J, Ottemöller L (2010) Routine earthquake analysis in earthquake seismology: with sample data, exercise and software. Chapter 6. Springer, ISBN 978-90- 481-8696-9

  32. Hofstetter R, Beyth M (2003) The Afar Depression: interpretation of the 1960–2000 earthquakes. Geophys J Int 155(2):715–732

    Article  Google Scholar 

  33. Humayon M, Lillie RJ, Lawrence RD (1991) Structural interpretation of the eastern Sulaiman foldbelt and foredeep, Pakistan. Tectonics 10(2):299–324

    Article  Google Scholar 

  34. Hutton L, Boore DM (1987) The ML scale in Southern California. Bull Seismol Soc Am 77(6):2074–2094

    Article  Google Scholar 

  35. Illsley-Kemp F, Keir D, Bull JM, Ayele A, Hammond JO, Kendall JM, Gallacher RJ, Gernon T, Goitom B (2017) Local Earthquake Magnitude Scale and b-value for the Danakil Region of Northern Afar. Bull Seismol Soc Am 107(2):521–531

    Article  Google Scholar 

  36. Jadoon I, Lawrence R, Lillie R (1992) Balanced and retrodeformed geological cross-section from the frontal Sulaiman Lobe, Pakistan: duplex development in thick strata along the western margin of the Indian plate. In: McClay KR (ed) Thrust tectonics, p.p. 343-356, Chapman and Hall, New York

  37. Jadoon IAK (1991) Thin-skinned tectonics on continent/ocean transitional crust, Sulaiman Range, Pakistan, PhD thesis, Oregon State University

  38. Jaswal TM, Lillie RJ, Lawrence RD (1997) Structure and evolution of the northern Potwar deformed zone, Pakistan. AAPG Bull 81(2):308–328

    Google Scholar 

  39. Jaumé SC, Lillie RJ (1988) Mechanics of the Salt Range-Potwar Plateau, Pakistan: a fold-and-thrust belt underlain by evaporites. Tectonics 7(1):57–71

    Article  Google Scholar 

  40. Kanamori H, Jennings PC (1978) Determination of local magnitude, ML, from strong-motion accelerograms. Bull Seismol Soc Am 68(2):471–485

    Google Scholar 

  41. Kanamori H, Mori J, Hauksson E, Heaton TH, Hutton LK, Jones LM (1993) Determination of earthquake energy release and ML using TERRAscope. Bull Seismol Soc Am 83(2):330–346

    Google Scholar 

  42. Kazmi AH, Jan MQ (1997) Geology and tectonics of Pakistan. Graphic Publishers, Karachi

    Google Scholar 

  43. Kazmi AH, Rana RA (1982) Tectonic map of Pakistan, 1:2,000,000. Geological Survey of Pakistan, Quetta

    Google Scholar 

  44. Kebede F, Van Eck T (1997) Probabilistic seismic hazard assessment for the Horn of Africa based on seismotectonic regionalisation. Tectonophysics 270(3–4):221–237

    Article  Google Scholar 

  45. Keir D, Stuart G, Jackson A, Ayele A (2006) Local earthquake magnitude scale and seismicity rate for the Ethiopian rift. Bull Seismol Soc Am 96(6):2221–2230

    Article  Google Scholar 

  46. Kim WY (1998) The ML scale in eastern North America. Bull Seismol Soc Am 88(4):935–951

    Google Scholar 

  47. Langston CA, Brazier R, Nyblade AA, Owens TJ (1998) Local magnitude scale and seismicity rate for Tanzania, East Africa. Bull Seismol Soc Am 88(3):712–721

    Google Scholar 

  48. Malagnini L, Herrmann RB, Di Bona M (2000) Ground-motion scaling in the Apennines (Italy). Bull Seismol Soc Am 90(4):1062–1081

    Article  Google Scholar 

  49. McDougall JW, Khan SH (1990) Strike-slip faulting in a foreland fold-thrust belt: the Kalabagh Fault and Western Salt Range, Pakistan. Tectonics 9(5):1061–1075

    Article  Google Scholar 

  50. Morasca P, Malagnini L, Akinci A, Spallarossa D, Herrmann R (2006) Ground-motion scaling in the western alps. J Seismol 10(3):315–333

    Article  Google Scholar 

  51. Muco B, Minga P (1991) Magnitude determination of near earthquakes for the Albanian network. Bollettino di Geofisica Teorica ed Applicata 33(129):17–24

    Google Scholar 

  52. Münchmeyer J, Bindi D, Sippl C, Leser U, Tilmann F (2020) Low uncertainty multifeature magnitude estimation with 3-D corrections and boosting tree regression: application to North Chile. Geophys J Int 220(1):142–159

    Article  Google Scholar 

  53. Mushtaq MN, Tahir M, Shah MA, Khanam F (2019) Development of local magnitude scale for the Northern Punjab, Pakistan. J Seismol 23(3):403–416

    Article  Google Scholar 

  54. Ortega R, Quintanar L (2005) A study of the local magnitude scale in the basin of Mexico: mutually consistent estimates of log a 0 and ground-motion scaling. Bull Seismol Soc Am 95(2):605–613

    Article  Google Scholar 

  55. Ortega R, Herrmann RB, Quintanar L (2003) Earthquake ground-motion scaling in Central Mexico between 0.7 and 7 Hz. Bull Seismol Soc Am 93(1):397–413

    Article  Google Scholar 

  56. Pujol J (2003) Determination of a local magnitude scale: a generalized inverse solution. Bull Seismol Soc Am 93(6):2758–2761

    Article  Google Scholar 

  57. Rezapour M, Rezaei R (2011) Empirical distance attenuation and the local magnitude scale for Northwest Iran. Bull Seismol Soc Am 101(6):3020–3031

    Article  Google Scholar 

  58. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25(1):1–32

    Article  Google Scholar 

  59. Sato H, Fehler MC, Maeda T (1998) Seismic wave propagation and scattering in the heterogeneous earth. Springer-Verlag and American Institute of Physics Press, New York

    Book  Google Scholar 

  60. Satyabala S, Yang Z, Bilham R (2012) Stick-slip advance of the Kohat Plateau in Pakistan. Nat Geosci 5(2):147–150

    Article  Google Scholar 

  61. Saunders I, Ottemöller L, Brandt MB, Fourie CJ (2013) Calibration of an \(M_L\) scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009. J Seismol 17(2):437–451

    Article  Google Scholar 

  62. Savage MK, Anderson JG (1995) A local-magnitude scale for the Western Great Basin-Eastern Sierra Nevada from synthetic Wood-Anderson seismograms. Bull Seismol Soc Am 85(4):1236–1243

    Google Scholar 

  63. Sheen DH, Kang TS, Rhie J (2018) A local magnitude scale for South Korea. Bull Seismol Soc Am 108(5A):2748–2755

    Article  Google Scholar 

  64. Sipkin SA, Jordan TH (1979) Frequency dependence of QSCS. Bull Seismol Soc Am 69(4):1055–1079

    Google Scholar 

  65. Stange S (2006) ML determination for local and regional events using a sparse network in southwestern Germany. J Seismol 10(2):247–257

    Article  Google Scholar 

  66. Toksöz M, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 44(4):681–690

    Article  Google Scholar 

Download references

Acknowledgements

We received significant help from Mr. Bilal Saif regarding Cartography. The GMT mapping package by P. Wessel and W. Smith, 1991, was used for plotting most of the figures. The authors are thankful to the Director General, Centre for Earthquake Studies, Islamabad, for permission to publish the paper. Digital broadband waveform data are recorded by the permanent observatories of the Pakistan Metrological Department (PMD), Islamabad. The authors highly appreciate the valuable remarks, detailed comments and suggestions of the two anonymous reviewers and editor that helped much to improve this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tahir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Prof. Ramon Zuñiga (CO-EDITOR-IN-CHIEF).

Appendix

Appendix

Error in location

The appendix represents error in location parameters (i.e., latitude, longitude and depth). Seisan software has been used for earthquake location, with Hypo71 routine. We use the 2D velocity model that developed for Southern California. In location, if azimuthal coverage is poor, i.e., less than 100\(^\circ \), then we additionally use seismic stations from other networks. In most of cases, stations of Pakistan Meteorological Department(PMD) are added, other than PMD stations, we also use data of USGS stations in certain cases for improvement in location. Error in latitude, longitude and depth of seismic events used in this study is shown in Figs. 11 and 12. Average value of error in latitude and longitude for our network is 8 and 10 km, respectively.

Fig. 11
figure11

Histogram representation of error in latitude (left) and longitude (right) of earthquake location. Dark and light vertical is average and one standard deviation error, respectively

Fig. 12
figure12

Distribution of events depth (left) and error (right) used in this study

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tahir, M., Khan, A., Mushtaq, M.N. et al. Distance attenuation and local magnitude scale based on constant geometrical spreading in Northern Punjab, Pakistan. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00634-1

Download citation

Keywords

  • Local magnitude scale
  • Attenuation
  • Station correction factor
  • Hazard assessment
  • Geometrical spreading