Skip to main content

Evaluating the reconstruction method of satellite-based monthly precipitation over Golestan province, Northern Iran

Abstract

Accurate gridded precipitation data with high spatial and temporal scales are required for diverse studies such as climatology, meteorology, and hydrology. Currently, one of the sources of global precipitation estimation is the satellite-based precipitation estimate products. Nonetheless, their spatial resolution is often too coarse for usage in local region and basin scales or for parameterizing of meteorological and hydrological models at regional scales. In the present paper, a reconstruction method of satellite-based monthly precipitation was developed to attain improved pixel-based precipitation data with high spatial resolution on Golestan province in Northern Iran. In this endeavor, we considered the spatially heterogeneous relationships between tropical rainfall measuring mission (TRMM) precipitation and environmental variables utilizing the moving-window regression methods, the geographically weighted regression (GWR) and the mixed geographically weighted regression (MGWR) models. By in situ observations from rain gauges in the study area, the calibration and validation were performed, and the following conclusions were derived: (1) the proposed procedure had the ability to enhance both the spatial resolution and accuracy of satellite-based precipitation estimates; (2) the monthly reconstructed precipitation using the GWR model (CC = 0.69, bias = 0.75) and using the MGWR model (CC = 0.72, bias = 0.64) outperformed the TRMM-3B43V7 data (CC = 0.58, bias = 0.84) against ground observations; (3) this research offered a potential solution for producing gridded precipitation estimates at high spatial resolution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Agam N, Kustas WP, Anderson MC, Li F, Neale CM (2007) A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens Environ 107:545–558. https://doi.org/10.1016/j.rse.2006.10.006

    Article  Google Scholar 

  2. Alexakis D, Tsanis I (2016) Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Environ Earth Sci 75:1077. https://doi.org/10.1007/s12665-016-5883-z

    Article  Google Scholar 

  3. Beck H et al. (2017a) MSWEP: 3-hourly 0.1° fully global precipitation (1979-present) by merging gauge, satellite, and weather model data EGUGA:18289

  4. Beck HE, Van Dijk AI, Levizzani V, Schellekens J, Gonzalez Miralles D, Martens B, De Roo A (2017b) MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21:589–615

    Article  Google Scholar 

  5. Beck H, Yang L, Pan M, Wood E, William L (2017b) MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative appraisal AGUFM 2017:H21E-1501

  6. Beck HE et al (2019) MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc 100:473–500. https://doi.org/10.1175/BAMS-D-17-0138.1

    Article  Google Scholar 

  7. Brunsdon C, Fotheringham S, Charlton M (1998) Geographically weighted regression. J R Stat Soc Series D (the Statistician) 47:431–443. https://doi.org/10.1111/1467-9884.00145

    Article  Google Scholar 

  8. CHAID CHi-squared Automated Interaction Detection. https://r-forge.r-project.org/R/?group_id=343

  9. Cheema MJM, Bastiaanssen WG (2012) Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int J Remote Sens 33:2603–2627. https://doi.org/10.1080/01431161.2011.617397

    Article  Google Scholar 

  10. Chen F, Liu Y, Liu Q, Li X (2014) Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int J Remote Sens 35:3074–3093. https://doi.org/10.1080/01431161.2014.902550

    Article  Google Scholar 

  11. Chen C, Zhao S, Duan Z, Qin Z (2015) An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression. IEEE J Sel Top Appl Earth Obs Remote Sens 8:4592–4604. https://doi.org/10.1109/JSTARS.2015.2441734

    Article  Google Scholar 

  12. Chen S, Zhang L, She D, Chen J (2019) Spatial downscaling of tropical rainfall measuring mission (TRMM) annual and monthly precipitation data over the middle and lower reaches of the Yangtze river basin, China. Water 11:568. https://doi.org/10.3390/w11030568

    Article  Google Scholar 

  13. Darand M, Amanollahi J, Zandkarimi S (2017) Evaluation of the performance of TRMM multi-satellite precipitation analysis (TMPA) estimation over Iran. Atmos Res 190:121–127. https://doi.org/10.1016/j.atmosres.2017.02.011

    Article  Google Scholar 

  14. Duan Z, Bastiaanssen W (2013) First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens Environ 131:1–13. https://doi.org/10.1016/j.rse.2012.12.002

    Article  Google Scholar 

  15. Duan Z, Liu J, Tuo Y, Chiogna G, Disse M (2016) Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci Total Environ 573:1536–1553. https://doi.org/10.1016/j.scitotenv.2016.08.213

    Article  Google Scholar 

  16. ERA ERA Interim, Monthly Means of Daily Means, European Centre for Medium-Range Weather Forecasts. https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype%3Dsfc/Accessed from 8 Sep 2019

  17. EarthExplorer Query and order satellite images, aerial photographs, and cartographic products through the U.S. Geological Survey. https://earthexplorer.usgs.gov/. Accessed from 8 Sep 2019

  18. Foody G (2003) Geographical weighting as a further refinement to regression modelling: an example focused on the NDVI–rainfall relationship. Remote Sens Environ 88:283–293. https://doi.org/10.1016/j.rse.2003.08.004

    Article  Google Scholar 

  19. Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons, Hoboken

    Google Scholar 

  20. Funk C et al (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  21. GES-DISC-NASA NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). https://disc.gsfc.nasa.gov/SSW/#keywords=3B43. Accessed from 8 Sep 2019

  22. Gao Y, Huang J, Li S, Li S (2012) Spatial pattern of non-stationarity and scale-dependent relationships between NDVI and climatic factors—a case study in Qinghai-Tibet Plateau, China. Ecol Indic 20:170–176. https://doi.org/10.1016/j.ecolind.2012.02.007

    Article  Google Scholar 

  23. Gebremichael M, Krajewski WF, Over TM, Takayabu YN, Arkin P, Katayama M (2008) Scaling of tropical rainfall as observed by TRMM precipitation radar. Atmos Res 88:337–354. https://doi.org/10.1016/j.atmosres.2007.11.028

    Article  Google Scholar 

  24. GSRW Golestan Regional Water Authority. http://www.gsrw.ir/. Accessed 8 from Sep 2019

  25. GUIDE GUI for DErivatives in R. https://cran.r-project.org/web/packages/GUIDE/index.html.

  26. GWR 4 Geographically Weighted Modelling. http://gwr.maynoothuniversity.ie/gwr4-software/. Accessed from 10 Aug 2019

  27. Hsu K-l, Gao X, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190

    Article  Google Scholar 

  28. Huffman GJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  29. Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo S-H (2015) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 4:26

  30. Immerzeel W, Rutten M, Droogers P (2009) Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens Environ 113:362–370. https://doi.org/10.1016/j.rse.2008.10.004

    Article  Google Scholar 

  31. Jia S, Zhu W, Lű A, Yan T (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam basin of China remote sensing of. Environment 115:3069–3079. https://doi.org/10.1016/j.rse.2011.06.009

    Article  Google Scholar 

  32. Jing W, Yang Y, Yue X, Zhao X (2016) A spatial downscaling algorithm for satellite-based precipitation over the Tibetan plateau based on NDVI, DEM, and Land Surface Temperature. Remote Sens 8:655. https://doi.org/10.3390/rs8080655

    Article  Google Scholar 

  33. Joseph R, Smith TM, Sapiano MR, Ferraro RR (2009) A new high-resolution satellite-derived precipitation dataset for climate studies. J Hydrometeorol 10:935–952. https://doi.org/10.1175/2009JHM1096.1

    Article  Google Scholar 

  34. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  35. Kubota T et al (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans Geosci Remote Sens 45:2259–2275. https://doi.org/10.1109/TGRS.2007.895337

    Article  Google Scholar 

  36. Kustas WP, Norman JM, Anderson MC, French AN (2003) Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens Environ 85:429–440. https://doi.org/10.1016/S0034-4257(03)00036-1

    Article  Google Scholar 

  37. Kyriakidis PC, Kim J, Miller NL (2001) Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J Appl Meteorol 40:1855–1877. https://doi.org/10.1175/1520-0450(2001)040%3c1855:GMOPFR%3e2.0.CO;2

    Article  Google Scholar 

  38. Langella G, Basile A, Bonfante A, Terribile F (2010) High-resolution space–time rainfall analysis using integrated ANN inference systems. J Hydrol 387:328–342. https://doi.org/10.1016/j.jhydrol.2010.04.027

    Article  Google Scholar 

  39. Li M, Shao Q (2010) An improved statistical approach to merge satellite rainfall estimates and raingauge data. J Hydrol 385:51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023

    Article  Google Scholar 

  40. Li Y, Zhang Y, He D, Luo X, Ji X (2019) Spatial downscaling of the tropical rainfall measuring mission precipitation using geographically weighted regression Kriging over the Lancang River Basin, China. Chin Geogr Sci 29:446–462. https://doi.org/10.1007/s11769-019-1033-3

    Article  Google Scholar 

  41. Ly S, Charles C, Degré A (2013) Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review Biotechnologie. Agron Soc Et Environ 17:392–406

    Google Scholar 

  42. LP-DAAC The Land Processes Distributed Active Archive Center (LP DAAC). https://lpdaac.usgs.gov/. Accessed from 8 Sep 2019

  43. Ma Z, Shi Z, Zhou Y, Xu J, Yu W, Yang Y (2017a) A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effects of systematic anomalies removed. Remote Sens Environ 200:378–395. https://doi.org/10.1016/j.rse.2017.08.023

    Article  Google Scholar 

  44. Ma Z, Zhou Y, Hu B, Liang Z, Shi Z (2017b) Downscaling annual precipitation with TMPA and land surface characteristics in China. Int J Climatol 37:5107–5119. https://doi.org/10.1002/joc.5148

    Article  Google Scholar 

  45. Ma Z, He K, Tan X, Liu Y, Lu H, Shi Z (2019a) A new approach for obtaining precipitation estimates with a finer spatial resolution on a daily scale based on TMPA V7 data over the Tibetan Plateau. Int J Remote Sens 40:8465–8483. https://doi.org/10.1080/01431161.2019.1612118

    Article  Google Scholar 

  46. Ma Z et al (2019b) Long-term precipitation estimates generated by a downscaling-calibration procedure over the Tibetan plateau from 1983 to 2015. Earth Space Sci 6:2180–2199. https://doi.org/10.1029/2019EA000657

    Article  Google Scholar 

  47. Ma Z et al (2020) An updated moving window algorithm for hourly-scale satellite precipitation downscaling: a case study in the Southeast Coast of China. J Hydrol 581:124378. https://doi.org/10.1016/j.jhydrol.2019.124378

    Article  Google Scholar 

  48. Ma Z et al (2020) AIMERG: a new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst Sci Data 12:1525–1544

    Article  Google Scholar 

  49. McVicar TR, Van Niel TG, Li L, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J Hydrol 338:196–220. https://doi.org/10.1016/j.jhydrol.2007.02.018

    Article  Google Scholar 

  50. Merlin O et al (2010) Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images. Remote Sens Environ 114:2500–2512. https://doi.org/10.1016/j.rse.2010.05.025

    Article  Google Scholar 

  51. Nastos P, Kapsomenakis J, Philandras K (2016) Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece. Atmos Res 169:497–514. https://doi.org/10.1016/j.atmosres.2015.08.008

    Article  Google Scholar 

  52. Pombo S, de Oliveira RP (2015) Evaluation of extreme precipitation estimates from TRMM in Angola. J Hydrol 523:663–679. https://doi.org/10.1016/j.jhydrol.2015.02.014

    Article  Google Scholar 

  53. Richard Y, Poccard I (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. Int J Remote Sens 19:2907–2920. https://doi.org/10.1080/014311698214343

    Article  Google Scholar 

  54. R-PROJECT The R Project for Statistical Computing. https://www.r-project.org/

  55. Shi Y, Song L (2015) Spatial downscaling of monthly TRMM precipitation based on EVI and other geospatial variables over the Tibetan Plateau from 2001 to 2012. Mt Res Dev 35:180–194. https://doi.org/10.1659/MRD-JOURNAL-D-14-00119.1

    Article  Google Scholar 

  56. Smith MB, Koren VI, Zhang Z, Reed SM, Pan J-J, Moreda F (2004) Runoff response to spatial variability in precipitation: an analysis of observed data. J Hydrol 298:267–286. https://doi.org/10.1016/j.jhydrol.2004.03.039

    Article  Google Scholar 

  57. Sokol Z, Bližňák V (2009) Areal distribution and precipitation–altitude relationship of heavy short-term precipitation in the Czech Republic in the warm part of the year. Atmos Res 94:652–662. https://doi.org/10.1016/j.atmosres.2009.03.001

    Article  Google Scholar 

  58. Tao K, Barros AP (2010) Using fractal downscaling of satellite precipitation products for hydrometeorological applications. J Atmos Ocean Tech 27:409–427. https://doi.org/10.1175/2009JTECHA1219.1

    Article  Google Scholar 

  59. WRM Iran Water Resources Management Company. http://wrbs.wrm.ir/. Accessed from 8 Sep 2019

  60. Wu C, Gonsamo A, Gough CM, Chen JM, Xu S (2014) Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sens Environ 147:79–88. https://doi.org/10.1016/j.rse.2014.03.001

    Article  Google Scholar 

  61. Xie P, Arkin PA (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  62. Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  63. Xie P et al (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214. https://doi.org/10.1175/2769.1

    Article  Google Scholar 

  64. Xu S, Wu C, Wang L, Gonsamo A, Shen Y, Niu Z (2015) A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sens Environ 162:119–140. https://doi.org/10.1016/j.rse.2015.02.024

    Article  Google Scholar 

  65. Yang N et al (2017) Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China. J Hydrol 549:313–325. https://doi.org/10.1016/j.jhydrol.2017.04.006

    Article  Google Scholar 

  66. Zhan C, Han J, Hu S, Liu L, Dong Y (2018) Spatial downscaling of GPM annual and monthly precipitation using regression-based algorithms in a mountainous area. Adv Meteorol 2(28):1–13. https://doi.org/10.1155/2018/1506017

    Article  Google Scholar 

  67. Zhang Y, Li Y, Ji X, Luo X, Li X (2018) Fine-resolution precipitation mapping in a mountainous watershed: geostatistical downscaling of TRMM products based on environmental variables. Remote Sens 10:119. https://doi.org/10.3390/rs10010119

    Article  Google Scholar 

  68. Zhao X, Jing W, Zhang P (2017) Mapping fine spatial resolution precipitation from TRMM precipitation datasets using an ensemble learning method and MODIS optical products in China. Sustainability 9:1912. https://doi.org/10.3390/su9101912

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Iran Water Resources Management Company for offering the ground-based precipitation data. The other dataset providers are also acknowledged.

Funding

No funding was received to assist with the preparation of this manuscript. The authors declare they have no financial interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dr. Richard Boothroyd (ASSOCIATE EDITOR) / Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdollahipour, A., Ahmadi, H. & Aminnejad, B. Evaluating the reconstruction method of satellite-based monthly precipitation over Golestan province, Northern Iran. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00623-4

Download citation

Keywords

  • Remote sensing
  • Precipitation
  • Downscaling
  • Golestan province