Skip to main content

First evidence of the non-extensive character of pre- and post-seismic deformation of Samos (2020) Mw7.0 earthquake

Abstract

The statistical patterns occurring on the threshold of an earthquake, in the transition stage immediately before and after the rupture, still remain unclear. Investigating the dynamical features of surface deformation a few days before and after the earthquake co-seismic rupture are crucial to understand the mechanics of the earthquake process. In the present work, we study surface displacements as estimated using continuous GNSS measurements in the vicinity of the 2020 Mw7.0 Samos (Greece) strong, shallow earthquake. The GNSS time series before and after the Mw7.0 earthquake in SAMO (belonging to METRICA SA HexagonSmartNet commercial network) station demonstrate significant surface deformation in the broader epicentral area. We further analyze the surface displacement increments a few days before and after the Samos Mw7.0 earthquake using the non-extensive statistical physics (NESP) framework, which could provide a frame to study the complexity of the earthquake process. The results of the analysis suggest that the statistical distribution of ground displacement increments presents asymptotic power-law behavior that deviates from the standard Gaussian function. Instead, the observed distributions can be described by the q-Gaussian function derived in the NESP framework, for q-values in the range of 1.10–1.15. In addition, the statistical pattern that was obtained from the analysis is further discussed in terms of superstatistics, indicating that the ground displacement increments a few days before and after the Mw7.0 earthquake correspond to a system with high enough degrees of freedom of the order of 13–15. Furthermore, for comparison, a four years record of continuous GNSS measurements was analyzed using NESP. The results support the non-extensive character of displacement increments using a four years period of recordings suggesting long-range temporal correlations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Antonopoulos CG, Michas G, Vallianatos F, Bountis T (2014) Evidence of q-exponential statistics in Greek seismicity. Phys A 409:71–77. https://doi.org/10.1016/j.physa.2014.04.042

    Article  Google Scholar 

  2. Aristotle University Of Thessaloniki Seismological Network (1981) Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki. Int Feder Digital Seism Netw. https://doi.org/10.7914/SN/HT

    Article  Google Scholar 

  3. Beck C (2001) Dynamical foundations of non-extensive statistical mechanics. Phys Rev Lett 87(18):180601. https://doi.org/10.1103/PhysRevLett.87.180601

    Article  Google Scholar 

  4. Beck C (2009) Recent developments in superstatistics. Brazilian J. Physics 39:357–363. https://doi.org/10.1590/S0103-97332009000400003

    Article  Google Scholar 

  5. Beck C (2006) Superstatistical brownian motion. Prog Theor Phys Suppl 162:29–36. https://doi.org/10.1143/PTPS.162.29

    Article  Google Scholar 

  6. Beck C, Cohen EGD (2003) Superstatistics. Phys A 322:267–275. https://doi.org/10.1016/S0378-4371(03)00019-0

    Article  Google Scholar 

  7. Bogusz J, Klos A, Figurski M, Kujawa M (2015) Investigation of long-range dependencies in the stochastic part of daily gps solutions. Surv Rev. https://doi.org/10.1179/1752270615Y.0000000022

    Article  Google Scholar 

  8. Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north eastern aegean Sea Islands. Tectonophysics 597–598:106–122. https://doi.org/10.1016/j.tecto.2012.11.026

    Article  Google Scholar 

  9. Dach R, Lutz S, Walser P, Fridez P (eds) (2015b) Bernese GNSS software version 5.2. User manual. Astronomical Institute, University of Bern, Bern Open Publishing. https://doi.org/10.7892/boris.72297

  10. Efstathiou A, Tzanis A, Vallianatos F (2015) Evidence of non-extensivity in the evolution of seismicity along the San-Andreas Fault, California, USA: an approach based on tsallis statistical physics. Phys Chem Earth 85–86:56–68. https://doi.org/10.1016/j.pce.2015.02.013

    Article  Google Scholar 

  11. Ferraro F, Koutalonis I, Vallianatos F, Agosta F (2019) Application of non-extensive Statistical Physics on the particle size distribution in natural carbonate fault rocks. Tectonophys 771:228219. https://doi.org/10.1016/j.tecto.2019.228219

    Article  Google Scholar 

  12. Filatov D, Lyubushin A (2017) Fractal analysis of gps time series for early detection of disastrous seismic events. Phys A 469:718–730. https://doi.org/10.1016/j.physa.2016.11.046

    Article  Google Scholar 

  13. Filatov D, Lyubushin A (2019) Precursory analysis of gps time series for seismic hazard assessment. Pure Appl Geophys 177:509–530. https://doi.org/10.1007/s00024-018-2079-3

    Article  Google Scholar 

  14. Ganas Α (2020). NOAFAULTS KMZ layer Version 3.0 (2020 update) (Version V3.0). Zenodo. https://doi.org/10.5281/zenodo.4304613

  15. Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Karasante I, Efstathiou E (2020) Fault responsible for Samos earthquake identified. Temblor. https://doi.org/10.32858/temblor.134

  16. Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci 99:109–138. https://doi.org/10.1007/s00531-008-0366-4

    Article  Google Scholar 

  17. Keilis-Borok VI (1990) The lithosphere of the earth as a nonlinear system with implications for earthquake prediction. Rev Geophys 28(1):19–34. https://doi.org/10.1029/RG028i001p00019

    Article  Google Scholar 

  18. Kiratzi A (2002) Stress tensor inversions along the westernmost north anatolian fault zone and its continuation into the North Aegean Sea. Geophys J Int 151(2):360–376. https://doi.org/10.1046/j.1365-246X.2002.01753.x

    Article  Google Scholar 

  19. Kiratzi A (2014) Mechanisms of Earthquakes in Aegean. In: Beer M, Kougioumtzoglou IA, Patelli E, Siu-Kui AuI (eds) Encyclopedia of earthquake engineering. Springer, Berlin, pp 1–22

    Google Scholar 

  20. Klos A, Bogusz J, Figurski M, Kosek W (2014a) Uncertainties of geodetic velocities from permanent gps observations: the sudeten case study. Acta Geodyn Geomater 11 3(175):201–209. https://doi.org/10.13168/AGG.2014005

    Article  Google Scholar 

  21. Klos A, Bogusz J, Figurski M, Kosek W (2014b) Irregular variations in gps time series by probability and noise analysis. Surv Rev. https://doi.org/10.1179/1752270614Y.0000000133

    Article  Google Scholar 

  22. Klos A, Gruszczynska M, Bos MS, Boy J, Bogusz J (2019) Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models. In: Braitenberg C, Rossi G (eds) Geodynamics and Earth Tides Observations from Global to Micro Scale. Pageoph Topical Volumes, Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96277-1_18

    Chapter  Google Scholar 

  23. Koutalonis I, Vallianatos F (2017) Evidence of non-extensivity in earth’s ambient noise. Pure Appl Geophys 174:4369–4378. https://doi.org/10.1007/s00024-017-1669-9

    Article  Google Scholar 

  24. Langbein J, Murray J, Snyder H (2006) Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, Observed by global positioning system, electronic distance meter, creepmeters, and borehole strainmeters. Bul Seism Soc Am 96(4B):S304–S320. https://doi.org/10.1785/0120050823

    Article  Google Scholar 

  25. Lekkas E et al (2020) The October 30, 2020, M 6 9 Samos (Greece) earthquake. Newsl Environ Disaster Cris Manag Strateg 92–93:1–156

    Google Scholar 

  26. Michas G, Vallianatos F, Sammonds P (2013) Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlinear Proc Geophys 20:713–724. https://doi.org/10.5194/npg-20-713-2013

    Article  Google Scholar 

  27. Michas G, Vallianatos F, Sammonds P (2015) Statistical mechanics and scaling of fault population with increasing strain in the Corinth Rift. Earth Planet Sci Lett 431:150–163. https://doi.org/10.1016/j.epsl.2015.09.014

    Article  Google Scholar 

  28. Ozacar A (2011). Present day stress pattern of turkey from inversion of updated earthquake focal mechanism catalogue. AGU Fall Meeting Abstracts S21A-2156

  29. Papadakis G, Vallianatos F, Sammonds P (2013) Evidence of nonextensive statistical physics behavior of the Hellenic subduction zone seismicity. Tectonophys 608:1037–1048. https://doi.org/10.1016/j.tecto.2013.07.009

    Article  Google Scholar 

  30. Papadakis G, Vallianatos F, Sammonds P (2014) A nonextensive statistical physics analysis of the 1995 Kobe, Japan earthquake. Pure Appl Geophys 172:1923–1931. https://doi.org/10.1007/s00024-014-0876-x

    Article  Google Scholar 

  31. Papadakis G, Vallianatos F, Sammonds P (2016) Non-extensive statistical physics applied to heat flow and the earthquake frequency distribution in Greece. Phys A 456:135–144. https://doi.org/10.1016/j.physa.2016.03.022

    Article  Google Scholar 

  32. Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kassaras I, Sakkas V, Kouskouna V, Karatzetzou A, Pavlou K, Kaviris G, Voulgaris N (2020) First results on the M=6 9 Samos earthquake of 30 October 2020. Bull Geol Soc Greece. 56(1):251–279. https://doi.org/10.12681/bgsg.25359

    Article  Google Scholar 

  33. Papanikolaou D (1997) The tectonostratigraphic terranes of the Hellenides. Annales Géologiques des Pays Helléniques 37:495–514

    Google Scholar 

  34. Reid HF (1910) The mechanics of the earthquake. The California Earthquake of April 18, 1906: report of the state earthquake investigation commission 2:16-18 Carnegie Institution of Washington Publication: Washington, DC, USA

  35. Reilinger R, Ergintav S, Bürgmann R, McCluskey S, Lenk O, Barka A, Gurkan O, Hearn E, Feigl KL, Cakmak R et al (2000) Coseismic and postseismic fault slip for the 17 august 1999, M = 7.5, Izmit Turkey Earthquake. Science 289:1519–1524. https://doi.org/10.1126/science.289.5484.1519

    Article  Google Scholar 

  36. Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  37. Ring U, Okrusch M, Will T (2007) Samos Island, Part I: metamorphosed and non metamorphosed nappes, and sedimentary basins. J Virtual Explor 27:5. https://doi.org/10.3809/jvirtex.2007.00180

    Article  Google Scholar 

  38. Saltas V, Vallianatos F, Triantis D, Koumoudeli T, Stavrakas I (2019) Non-extensive statistical analysis of acoustic emissions series recorded during the uniaxial compression of brittle rocks. Phys A 528:121498. https://doi.org/10.1016/j.physa.2019.121498

    Article  Google Scholar 

  39. Saltas V, Vallianatos F, Triantis D, Stavrakas I (2018) Complexity in laboratory seismology: from electrical and acoustic emissions to fracture. In: Chelidze T, Telesca L, Vallianatos F (eds) Complexity of seismic time series measurement and application. Elsevier, pp 239–273. https://doi.org/10.1016/B978-0-12-813138-1.00008-0

    Chapter  Google Scholar 

  40. Sornette D (2006) Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools Springer Series of Synergetic. Springer, Berlin

    Google Scholar 

  41. Telesca L (2010) Analysis of Italian seismicity by using a nonextensive approach. Tectonophys 494:155–162. https://doi.org/10.1016/j.tecto.2010.09.012

    Article  Google Scholar 

  42. Telesca L (2011) Tsallis-based nonextensive analysis of the Southern California Seismicity. Entropy 13:1267–1280. https://doi.org/10.3390/e13071267

    Article  Google Scholar 

  43. Triantafyllou I, Gogou M, Mavroulis S, Lekkas E, Papadopoulos GA, Thravalos M. The Tsunami Caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 Earthquake: Hydrodynamic Features, Source Properties and Impact Assessment from Post-Event Field Survey and Video Records. Journal of Marine Science and Engineering. 2021; 9(1):68. https://doi.org/10.3390/jmse9010068

  44. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52(1):479–487. https://doi.org/10.1007/BF01016429

    Article  Google Scholar 

  45. Tsallis C (2009) Introduction to nonextensive statistical mechanics—approaching a complex world. Springer, New York. https://doi.org/10.1007/978-0-387-85359-8

    Book  Google Scholar 

  46. Tserolas V, Mertikas SP, Frantzis X (2013) The western crete geodetic infrastructure: long-range power-law correlations in GPS time series using detrended fluctuation analysis. Adv Space Res 51:1448–1467

    Article  Google Scholar 

  47. Tur H et al (2015) Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophys 638:158–176

    Article  Google Scholar 

  48. Vallianatos F (2011) A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys A 390:1773–1778

    Article  Google Scholar 

  49. Vallianatos F, Sammonds P (2010) Is plate tectonics a case of non-extensive thermodynamics? Physica A 389:4989–4993

    Article  Google Scholar 

  50. Vallianatos F, Pavlou K (2021) Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence, Acta Geophysica. https://doi.org/10.1007/s11600-021-00579-5

  51. Vallianatos F, Sammonds P (2011) A non-extensive statistics of the fault-population at the valles marineris extensional province, Mars. Tectonophys 509:50–54. https://doi.org/10.1016/j.tecto.2011.06.001

    Article  Google Scholar 

  52. Vallianatos F, Sammonds P (2013) Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes. Tectonophys 590:52–58. https://doi.org/10.1016/j.tecto.2013.01.009

    Article  Google Scholar 

  53. Vallianatos F, Benson P, Meredith P, Sammonds P (2012) Experimental evidence of a non-extensive statistical physics behavior of fracture in triaxially deformed etna basalt using acoustic emissions. Europhys Lett 97:58002. https://doi.org/10.1209/0295-5075/97/58002

    Article  Google Scholar 

  54. Vallianatos F, Michas G, Benson P, Sammonds P (2013) Natural time analysis of critical phenomena: the case of acoustic emissions in triaxially deformed etna basalt. Phys A 392:5172–5178. https://doi.org/10.1016/j.physa.2013.06.051

    Article  Google Scholar 

  55. Vallianatos F, Karakostas V, Papadimitriou E (2014) A Non-Extensive statistical physics view in the spatiotemporal properties of the 2003 (Mw62) Lefkada, Ionian Island Greece, aftershock sequence. Pure Appl Geophys 171(7):1343–1534. https://doi.org/10.1007/s00024-013-0706-6

    Article  Google Scholar 

  56. Vallianatos F, Michas G, Papadakis G (2016a) A description of seismicity based on non-extensive statistical physics: A review. In: D’Amico S (ed) Earthquakes and their impact on society. Springer Natural Hazards. Springer, Heidelberg, pp 1–41

    Google Scholar 

  57. Vallianatos F, Michas G, Papadakis G (2016b) Generalized statistical mechanics approaches to earthquakes and tectonics. Proc R Roc A 472:20160497. https://doi.org/10.1098/rspa.2016.0497

    Article  Google Scholar 

  58. Vallianatos F, Michas G, Papadakis G (2018) Nonextensive statistical seismology: an overview In: In: Chelidze T, Vallianatos F, Telesca (eds) Complexity of seismic time series. Elsevier, Amsterdam, pp 25–60

    Chapter  Google Scholar 

  59. Vallianatos F, Michas G (2020) Complexity of fracturing in terms of non-extensive statistical physics: from earthquake faults to arctic sea ice fracturing. Entropy 22(11):1194. https://doi.org/10.3390/e22111194

    Article  Google Scholar 

  60. Valverde-Esparza SM, Ramirez-Rojas A, Flores-Marquez EL (2012) Non-extensivity analysis of seismicity within four subduction regions in Mexico. Acta Geophys. 60:833–845. https://doi.org/10.2478/s11600-012-0012-1

    Article  Google Scholar 

  61. Vilar CS, Franca GS, Silva R, Alcaniz JS (2007) Nonextensivity in geological faults? Phys A 377:285–290. https://doi.org/10.1016/j.physa.2006.11.017

    Article  Google Scholar 

  62. Wang P, Chang Z, Wang H (2015) Lu H (2015) Scale-invariant structure of energy fluctuations in real earthquakes. Eur Phys J B 88:206. https://doi.org/10.1140/epjb/e2017-70702-y

    Article  Google Scholar 

  63. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support of this study by the project "HELPOS−Hellenic Plate Observing System" (MIS 5002697) which is implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Program "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). We also acknowledge METRICA SA for providing Continuous GNSS data for the permanent station SAMO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Filippos Vallianatos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by the Guest Editors: Ramon Zuñiga, Eleftheria Papadimitriou, Vassilios Karakostas and Onur Tan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vallianatos, F., Michas, G., Sakkas, V. et al. First evidence of the non-extensive character of pre- and post-seismic deformation of Samos (2020) Mw7.0 earthquake. Acta Geophys. 69, 1127–1136 (2021). https://doi.org/10.1007/s11600-021-00606-5

Download citation

Keywords

  • CGNSS
  • Tsallis entropy
  • Samos earthquake
  • Surface deformation
  • Q-Gaussian