Skip to main content
Log in

Fast focusing iterative migration of magnetic anomalies

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Magnetic anomalies are interpreted for subsurface geological information. Three-dimensional inversion of magnetic data is a challenging quantitative approach for interpreting the data. The rapid iterative migration technique could be a good and fast alternative for the inversion method. The focusing iterative migration that employs a focusing stabilizer can generate focused migration models which justify geological interfaces, adequately. This paper introduces a new algorithm using a relaxed steepest descent method and a sigmoid stabilizer for fast focusing migration of magnetic fields. The developed method can improve the computational efficiency of focusing iterative migration by reducing the required iterations. The better performance of the new method is demonstrated by two numerical models and a real case study. The magnetic anomaly over San Nicolas massive sulfide deposit in Mexico is used for the case study. Compared with the drilling information, the iterative migration methods produce robust migration models for the San Nicolas deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abedi M, Gholami A, Norouzi GH, Fathianpour N (2013) Fast inversion of magnetic data using Lanczos bidiagonalization method. J Appl Geophys 90:126–137

    Article  Google Scholar 

  • Baniamerian J, Fedi M, Oskooi B (2016) Research note: compact depth from extreme points: a tool for fast potential field imaging. Geophys Prospect 64:1386–1398

    Article  Google Scholar 

  • Chianese D, Lapenna V (2007) Magnetic probability tomography for environmental purposes: test measurements and field applications. J Geophys Eng 4:63–74

    Article  Google Scholar 

  • Ding Y, Ma G, Xiong S, Wang H (2020) Three-dimensional regularized focusing migration: a case study from the Yucheng Mining area, Shandong, China. Miner 10:471

    Article  Google Scholar 

  • Farquharson CG (2008) Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73:K1–K9

    Article  Google Scholar 

  • Fedi M (2007) DEXP: A fast method to determine the depth and the structural index of potential fields sources. Geophysics 72:I1–I11

    Article  Google Scholar 

  • Fedi M, Pilkington M (2012) Understanding imaging methods for potential field data. Geophysics 77:G13–G24

    Article  Google Scholar 

  • Foks NL, Krahenbuhl R, Li Y (2014) Adaptive sampling of potential-field data: a direct approach to compressive inversion adaptive sampling and compressive inversion. Geophysics 79:IM1–IM9

    Article  Google Scholar 

  • Hornby P, Boschetti F, Horowitz FG (1999) Analysis of potential field data in the wavelet domain. Geophys J Int 137:175–196

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61:394–408

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63:109–119

    Article  Google Scholar 

  • Liu CS (2013) An optimally generalized steepest-descent algorithm for solving ill-posed linear systems. J Appl Math 2013:154358

    Google Scholar 

  • Liu S, Baniamerian J, Fedi M (2019) Imaging methods versus inverse methods: an option or an alternative? IEEE Trans Geosci Remote Sens 58:3484–3494

    Article  Google Scholar 

  • Luo Y, Yao L (2007) Theoretical study on cuboid magnetic field and gradient expression without singular point. Oil Geophys Prospect 42:714–719

    Google Scholar 

  • Mauriello P, Patella D (2001) Gravity probability tomography: a new tool for buried mass distribution imaging. Geophys Prospect 49:1–12

    Article  Google Scholar 

  • Mehanee SA, Zhdanov MS (2002) 3-D finite difference iterative migration of the electromagnetic field. In: SEG Technical Program Expanded Abstracts 2002, Society of Exploration Geophysicists, pp 657–660

  • Meng Z, Li W, Li F, Li H (2020) Projected Barzilai-Borwein method for the acceleration of gravity field data inversion. Explor Geophys. https://doi.org/10.1080/08123985.2020.1814140

    Article  Google Scholar 

  • Pedersen LB (1991) Relations between potential fields and some equivalent sources. Geophysics 56:961–971

    Article  Google Scholar 

  • Phillips N, Oldenburg D, Chen J, Li Y, Routh P (2001) Cost effectiveness of geophysical inversions in mineral exploration: applications at San Nicolas. Lead Edge 20:1351–1360

    Article  Google Scholar 

  • Pilkington M (2009) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74:L7–L15

    Article  Google Scholar 

  • Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64:874–887

    Article  Google Scholar 

  • Portniaguine O, Zhdanov MS (2002) 3-D magnetic inversion with data compression and image focusing. Geophysics 67:1532–1541

    Article  Google Scholar 

  • Rezaie M (2019) 3D non-smooth inversion of gravity data by zero order minimum entropy stabilizing functional. Phys Earth Planet In 294:106275

    Article  Google Scholar 

  • Rezaie M (2020) A sigmoid stabilizing function for fast sparse 3D inversion of magnetic data. Near Surf Geophys 18:149–159

    Article  Google Scholar 

  • Rezaie M, Moradzadeh A, Kalate AN, Aghajani H (2017) Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method. Pure Appl Geophys 174:359–374

    Article  Google Scholar 

  • Tu X, Zhdanov MS (2020) Enhancement and sharpening the migration images of the gravity field and its gradients. Pure Appl Geophys 177:2853–2870

    Article  Google Scholar 

  • Ueda T, Zhdanov MS (2008) Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration. Explor Geophys 39:60–67

    Article  Google Scholar 

  • Vassallo LF, Aranda-Gómez JJ, Solorio-Munguía JG (2015) Hydrothermal alteration of volcanic rocks hosting the Late Jurassic-Early Cretaceous San Nicolás VMS deposit, southern Zacatecas. Mexico Rev Mex Cienc Geo 32:254–272

    Google Scholar 

  • Wan L, Zhdanov MS (2013) Iterative migration of gravity and gravity gradiometry data. In SEG technical program expanded abstracts 2013. Society of Exploration Geophysicists, pp 1211–1215. https://doi.org/10.1190/segam2013-1036.1

  • Xu Z, Wan L, Zhdanov MS (2020) Focusing iterative migration of gravity gradiometry data acquired in the Nordkapp Basin, Barents Sea. Geophys Prospect 68:2292–2306

    Article  Google Scholar 

  • Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier

    Google Scholar 

  • Zhdanov MS (2015) Inverse theory and applications in geophysics. Elsevier

    Google Scholar 

  • Zhdanov MS, Liu X, Wilson GA, Wan L (2012) 3D migration for rapid imaging of total-magnetic-intensity data. Geophysics 77:J1–J5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rezaie.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Communicated by Michal Malinowski (CO-EDITOR-IN-CHIEF)/Ivana Vasiljevic, Ph.D. (ASSOCIATE EDITOR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, M. Fast focusing iterative migration of magnetic anomalies. Acta Geophys. 69, 1215–1224 (2021). https://doi.org/10.1007/s11600-021-00587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00587-5

Keywords

Navigation