The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly

Abstract

The Great Sumatran Fault (GSF) activity is a severe threat to Banda Aceh development as the capital city of Aceh Province, Indonesia. The earthquakes originating along this fault trace, despite generating low strength, considerably threaten infrastructure and human lives. Therefore, a detailed study of the GSF activity and presence becomes critical. In this paper, we applied the Global Gravity Model plus (GGMPlus) to map the subsurface structure and modeling of two GSF segments with a resolution of 200 m/px, namely the Aceh and Seulimeum segments toward the north of the Sumatran Island. The Bouguer anomaly data are inconsistent with the geology of the study areas, dominated by igneous rocks on the Aceh segment and volcanic rocks on the Seulimeum segment. Further, the contrast between the Seulimeum segment in the northeast and the Aceh segment in the southwest can be demonstrated by high-pass filtering. The GGMPlus data validation results with field measurements using the Scintrex CG-5 Autograv, the root mean square error obtained via data comparison are 12.32% in the Krueng Raya fault zone, and 26.1% at the Seulawah Agam Volcano area, respectively. We also performed 2D gravity data modeling along with the Aceh and Seulimeum segments in the NW–SE direction. This model was then compared with the geological cross section, seismicity, and magnetotelluric data. The results of Singular Value Decomposition and Occam inversion show three vertical blocks of high densities with an interspersion of lower densities, which can be confirmed as the Aceh and Seulimeum segments. Based on data processing, it can be concluded that the GGMPlus satellite can improve the maps and images of the northernmost GSF structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data set used in this research area available from the corresponding author with a reasonable request.

References

  1. Asyqari A, Sugiyanto D, Yanis M, Abdullah F, Ismail N (2019) Mapping of archaeological structure along east-coast of Aceh Besar District, Indonesia based on total magnetic field anomalies. IOP Conf Ser Earth Environ Sci 348:012041. https://doi.org/10.1088/1755-1315/348/1/012041

    Article  Google Scholar 

  2. Bellier O, Sebrier M, Pramumijoyo S, Beaudouin T, Harjono H, Bahar I, Forni O (1997) Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia). J Geodyn 24:169–183

    Article  Google Scholar 

  3. Bennett JD, Bridge NR, Djunuddin A, Ghazali SA, Jeffery DH, Keats W, Rock NMS, Thompson SJ, Whandoyo R (1981) The Geology of the Banda Aceh Quadrangle, Sumatra-Geological Research and Development Centre, Bandung. Explan. note 19.

  4. BNPB (2013) Dampak dan Penanganan Bencana Gempa Bumi 6.2 SR di Bener Meriah dan Aceh Tengah [WWW Document]. https://bnpb.go.id/berita/30-meninggal-dan-275-luka-akibat-gempa-6-2-sr-di-aceh. Accessed 4 May 20.

  5. Chatterjee S, Bhattacharyya R, Michael L, Krishna KS, Majumdar TJ (2007) Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: accuracies and implications to subsurface modeling. Mar Geod 30:197–216. https://doi.org/10.1080/01490410701438323

    Article  Google Scholar 

  6. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591

    Article  Google Scholar 

  7. Duan XJ, Guo JY, Shum CK, Van Der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geod 83:1095

    Article  Google Scholar 

  8. Fernández-Blanco D, Philippon M, Von Hagke C (2016) Structure and kinematics of the Sumatran fault system in North Sumatra (Indonesia). Tectonophysics 693:453–464

    Article  Google Scholar 

  9. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod. https://doi.org/10.1007/s00190-011-0486-7

    Article  Google Scholar 

  10. Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of Earth’s gravity field. Geophys Res Lett 40:4279–4283

    Article  Google Scholar 

  11. Hirt C, Kuhn M, Claessens S, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Geosci, Comput. https://doi.org/10.1016/j.cageo.2014.09.001

    Google Scholar 

  12. Ismail N, Yanis M, Idris S, Abdullah F, Hanafiah B (2017) Near-surface fault structures of the seulimuem segment based on electrical resistivity model. J PhysConfSer 846:012016. https://doi.org/10.1088/1742-6596/846/1/012016

    Article  Google Scholar 

  13. Ito T, Gunawan E, Kimata F, Tabei T, Simons M, Meilano I, Agustan, Ohta Y, Nurdin I, Sugiyanto D (2012) Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. J Geophys Res Solid Earth 117:n/a-n/a. https://doi.org/10.1029/2011JB008940

    Article  Google Scholar 

  14. Jacoby W, Smilde PL (2009) Gravity interpretation: fundamentals and application of gravity inversion and geological interpretation. Springer, Berlin

    Google Scholar 

  15. Kamesh Raju KA, Murty GPS, Amarnath D, Kumar MLM (2007) The west Andaman fault and its influence on the aftershock pattern of the recent megathrust earthquakes in the Andaman-Sumatra region. Res Lett, Geophys. https://doi.org/10.1029/2006GL028730

    Google Scholar 

  16. Keating P, Pinet N (2013) Comparison of surface and shipborne gravity data with satellite-altimeter gravity data in Hudson Bay. Lead Edge 32:450–458

    Article  Google Scholar 

  17. Kern M, Schwarz KP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod. https://doi.org/10.1007/s00190-003-0313-x

    Article  Google Scholar 

  18. Kirschner M, Massmann FH, Steinhoff M (2013) GRACE. In: Distributed space missions for earth system monitoring. Springer, New York. https://doi.org/10.1007/978-1-4614-4541-8_19

  19. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RC, Beck SL, Bilek SL, Brudzinski MR, Butler R, Deshon HR, Ekström G, Satake K, Sipkin S (2005) The great Sumatra-Andaman earthquake of 26 December 2004. Science. https://doi.org/10.1126/science.1112250

    Article  Google Scholar 

  20. Lenhart A, Jackson CA-L, Bell RE, Duffy OB, Gawthorpe RL, Fossen H (2019) Structural architecture and composition of crystalline basement offshore west Norway. Lithosphere 11:273–293. https://doi.org/10.1130/L668.1

    Article  Google Scholar 

  21. Lewerissa R, Sismanto S, Setiawan A, Pramumijoyo S, Lapono L (2020) Integration of gravity and magnetic inversion for geothermal system evaluation in Suli and Tulehu, Ambon, eastern Indonesia. Arab J Geosci. https://doi.org/10.1007/s12517-020-05735-7

    Article  Google Scholar 

  22. Ma G, Li L (2012) Edge detection in potential fields with the normalized total horizontal derivative. Comput Geosci. https://doi.org/10.1016/j.cageo.2011.08.016

    Article  Google Scholar 

  23. Marwan A, Yanis M, Furumoto Y (2019a) Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. Int J Geomate 17:210–216. https://doi.org/10.21660/2019.63.77489

    Article  Google Scholar 

  24. Marwan, Yanis M, Idroes R, Ismail N (2019b) 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia. Int J Geomate 17: 173–180. https://doi.org/https://doi.org/10.21660/2019.62.11724

  25. Miller HG, Singh V (1994) Potential field tilt-a new concept for location of potential field sources. J Appl Geophys. https://doi.org/10.1016/0926-9851(94)90022-1

    Article  Google Scholar 

  26. Muksin U, Bauer K, Muzli M, Ryberg T, Nurdin I, Masturiyono M, Weber M (2019) AcehSeis project provides insights into the detailed seismicity distribution and relation to fault structures in Central Aceh. Northern Sumatra J Asian Earth Sci 171:20–27. https://doi.org/10.1016/j.jseaes.2018.11.002

    Article  Google Scholar 

  27. Muzli M, Muksin U, Nugraha AD, Bradley KE, Widiyantoro S, Erbas K, Jousset P, Rohadi S, Nurdin I, Wei S (2018) The 2016 Mw 65 Pidie Jaya, Aceh, North Sumatra, earthquake: reactivation of an unidentified sinistral fault in a region of distributed deformation. Seismol Res Lett. https://doi.org/10.1785/0220180068

    Article  Google Scholar 

  28. Nasuti A, Pascal C, Ebbing J (2012) Onshore-offshore potential field analysis of the Møre-Trøndelag Fault Complex and adjacent structures of Mid Norway. Tectonophysics. https://doi.org/10.1016/j.tecto.2011.11.003

    Article  Google Scholar 

  29. Natawidjaja DH, Sieh K, Galetzka J, Suwargadi BW, Cheng H, Edwards RL, Chlieh M (2007) Interseismic deformation above the SundaMegathrust recorded in coral microatolls of the Mentawai islands, West Sumatra. J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004450

    Article  Google Scholar 

  30. Natawidjaja DH, Triyoso W (2007) The Sumatran fault zone—From source to hazard. J Earthq Tsunami 1:21–47

    Article  Google Scholar 

  31. Newcomb KR, McCann WR (1987) Seismic history and seismotectonics of the Sunda Arc. J Geophys Res Solid Earth 92:421–439

    Article  Google Scholar 

  32. Nurhasan D, Sutarno D, Ogawa Y, Kimata F, Sugiyanto D (2011) Investigation of Sumatran fault Aceh Segment derived from Magnetotelluric Data. In: The XXV IUGG Conference Melbourne.

  33. Nurhasan, Ogawa Y, Kimata F, Sutarno D, Sugiyanto D, Ismail N (2019) Identification of Sumatran fault zone using magnetotelluric and garvity data. In: The 13th SEGJ International Symposium, Tokyo, Japan, 12–14 November 2018. Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, pp 182–185. https://doi.org/https://doi.org/10.1190/SEGJ2018-049.1

  34. Pirttijarvi M (2008) Gravity interpretation and modeling software based on 3-D block models. User’s Guide to version 1.

  35. Prihantoro R, Nurhasan, Sutarno D, Ogawa Y, Priahadena H, Fitriani D (2014) Geoelectrical dimensionality analyses in Sumatran Fault (Aceh segment) using magnetotelluric phase tensor. In: AIP Conference Proceedings. https://doi.org/https://doi.org/10.1063/1.4868767

  36. Rao NP, Rao CN, Hazarika P, Tiwari VM, Kumar MR, Singh A, Sharkov EV (2011) Structure and tectonics of the Andaman subduction zone from modeling of seismological and gravity data. Intech Publisher, Rijeka, Croatia

    Google Scholar 

  37. Rizal M, Ismail N, Yanis M, Muzakir, Surbakti MS (2019) The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. IOP Conf Ser Earth Environ Sci 364:012036. https://doi.org/10.1088/1755-1315/364/1/012036

    Article  Google Scholar 

  38. Saibi H, Mogren S, Mukhopadhyay M, Ibrahim E (2019) Subsurface imaging of the Harrat Lunayyir 2007–2009 earthquake swarm zone, western Saudi Arabia, using potential field methods. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2018.07.024

    Article  Google Scholar 

  39. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res Solid Earth. https://doi.org/10.1029/2008JB006008

    Article  Google Scholar 

  40. Sieh K, Natawidjaja D (2000) Neotectonics of the Sumatran fault, Indonesia. J Geophys Res Solid Earth 105:28295–28326. https://doi.org/10.1029/2000JB900120

    Article  Google Scholar 

  41. Silvennoinen H, Kozlovskaya E (2007) 3D structure and physical properties of the Kuhmo Greenstone Belt (eastern Finland): constraints from gravity modelling and seismic data and implications for the tectonic setting. J Geodyn. https://doi.org/10.1016/j.jog.2006.09.018

    Article  Google Scholar 

  42. Siripunvaraporn W, Egbert G (2009) WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation. Phys Earth Planet Inter. https://doi.org/10.1016/j.pepi.2009.01.013

    Article  Google Scholar 

  43. Tassis GA, Grigoriadis VN, Tziavos IN, Tsokas GN, Papazachos CB, Vasiljević I (2013) A new Bouguer gravity anomaly field for the Adriatic Sea and its application for the study of the crustal and upper mantle structure. J Geodyn. https://doi.org/10.1016/j.jog.2012.12.006

    Article  Google Scholar 

  44. USGS (2020) Earthquake Catalog [WWW Document]. https://earthquake.usgs.gov/earthquakes/search/. Accessed 3 May 2020.

  45. Wada S, Sawada A, Hiramatsu Y, Matsumoto N, Okada S, Tanaka T, Honda R (2017) Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan. Earth Planets Sp 69:15. https://doi.org/10.1186/s40623-017-0602-x

    Article  Google Scholar 

  46. Wang K, Hu Y, Bevis M, Kendrick E, Smalley R Jr, Vargas RB, Lauria E (2007) Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001721

    Article  Google Scholar 

  47. Yanis M, Faisal A, Yenny A, Muzakir Z, Abubakar M, Nazli I (2020a) Continuity of Great Sumatran Fault in the Marine Area revealed by 3D Inversion of gravity data. J Teknol 83:145–155. https://doi.org/10.11113/jurnalteknologi.v83.14824

    Article  Google Scholar 

  48. Yanis M, Marwan M, Kamalia N (2020b) Aplikasi satellite GEOSAT dan ERS sebagai Metode Alternatif Pengukuran Gravity Ground pada Cekungan Hidrokarbon di Pulau Timur. Maj Geogr Indonesia. https://doi.org/10.22146/mgi.50782

  49. Yanis M, Marwan (2019) The potential use of satellite gravity data for oil prospecting in Tanimbar Basin, Eastern Indonesia. IOP Conf Ser Earth Environ Sci 364:012032. https://doi.org/10.1088/1755-1315/364/1/012032

    Article  Google Scholar 

  50. Yanis M, Marwan, Ismail N (2019) Efficient use of satellite gravity anomalies for mapping the Great Sumatran Fault in Aceh Province, Indonesian. J Appl Phys 9:61

    Google Scholar 

Download references

Acknowledgement

The authors thank to Muzakkir, Masyitah and all geophysics team for providing field gravity data in the area of Seulawah Agam volcano to validate the GGMPlus. We also thank supporting data on field gravity in the Krueng Raya to the Geophysics Laboratory, Physics Department. Thanks to Mr Markku Pirttijarvi from Oulu University, Finland, to develop the GRABLOX software.

Funding

Data collection refinement and article writing were funded by Lector's research grant by Universitas Syiah Kuala No. 270/UN11/SPK/PNBP/2020.

Author information

Affiliations

Authors

Contributions

Administrate the research permit: F.A. and M.Y.; data processing: M.Y., N.Z.; data analysis: M.Y., N.I., and F.A.; writing draft and finalization of the manuscript: M.Y and N.Z.; layout of the manuscript: M.Y.; review manuscript: F.A., I.N.

Corresponding author

Correspondence to Muhammad Yanis.

Ethics declarations

Conflicts of interest

The authors declare that we have no conflict of interest in this paper.

Additional information

Communicated by Michal Malinowski (CO-EDITOR-IN-/Teresa Grabowska, Ph.D. (ASSOCIATE EDITOR)CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yanis, M., Abdullah, F., Zaini, N. et al. The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00567-9

Download citation

Keywords

  • Global gravity
  • Transformation
  • Sumatran Fault