Study on the applicability of the SCS-CN-based models to simulate floods in the semi-arid watersheds of northern Algeria

Abstract

Algeria has experienced catastrophic floods over the second half of the twentieth century, causing many deaths and extensive material damage. This study was conducted to find a suitable event-based rainfall-runoff (RR) model for semi-arid conditions, where continuous data are not available in all regional basins. The study compared, based on data availability, the SCS-CN model based on the antecedent moisture conditions (AMC) and four modified SCS-CN models incorporating antecedent moisture amounts (AMA) in order to find the best model to reproduce the flood hydrographs in two catchments. The modified models were predominant over the SCS-CN method. Nonetheless, the Singh et al. (Water Resour Manag 29:4111–4127, 2015. https://doi.org/10.1007/s11269-015-1048-1) model (M4) and the Verma et al. (Environ Earth Sci 76:736, 2017a. https://doi.org/10.1007/s12665-017-7062-2) model (M5) were superior and demonstrated more stable structures. Coupled with the Hayami routing model, the models showed promising results and were able to reproduce the observed hydrographs’ shape. However, it was impossible to choose the preferred model since they each excelled as to a criterion. Therefore, the corresponding outputs were combined using the simple average (SA) method and the weighted average (WA) method. We found that the WA method showed better results in the two catchments and allowed a more accurate prediction according to the performance criteria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdi I, Meddi M (2015) Modélisation pluie-débit distribuée dans deux bassins versants de l’est de l’Algérie. LARHYSS J P-ISSN 1112-3680/E-ISSN 2602-7828 7–22

  2. Ajami NK, Duan Q, Gao X, Sorooshian S (2006) Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results. J Hydrometeorol 7:755–768

    Article  Google Scholar 

  3. Ajmal M, Waseem M, Ahn J-H, Kim T-W (2015) Improved runoff estimation using event-based rainfall-runoff models. Water Resour Manag 29:1995–2010. https://doi.org/10.1007/s11269-015-0924-z

    Article  Google Scholar 

  4. Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and ground water recharge from streamflow records. JAWRA J Am Water Resour Assoc 35:411–424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x

    Article  Google Scholar 

  5. Bennett ND, Croke BFW, Guariso G et al (2013) Characterising performance of environmental models. Environ Model Softw 40:1–20

    Article  Google Scholar 

  6. Brocca L, Melone F, Moramarco T, Morbidelli R (2009) Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 148:364–374. https://doi.org/10.1016/j.geoderma.2008.11.004

    Article  Google Scholar 

  7. Brocca L, Melone F, Moramarco T (2011) Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrol Process 25:2801–2813. https://doi.org/10.1002/hyp.8042

    Article  Google Scholar 

  8. CCI Land Cover team (2017) CCI LAND COVER-S2 prototype Land Cover 20 m map of Africa 2016

  9. Chahinian N, Moussa R, Andrieux P, Voltz M (2005) Comparison of infiltration models to simulate flood events at the field scale. J Hydrol 306:191–214. https://doi.org/10.1016/j.jhydrol.2004.09.009

    Article  Google Scholar 

  10. Chang TK, Talei A, Alaghmand S, Ooi MP-L (2017) Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques. J Hydrol 545:100–108. https://doi.org/10.1016/j.jhydrol.2016.12.024

    Article  Google Scholar 

  11. Chow VT, Maidment DR, Mays LW (1988) Appl hydrol. McGraw-Hil, New York

    Google Scholar 

  12. Clemen RT, Murphy AH, Winkler RL (1995) Screening probability forecasts: contrasts between choosing and combining. Int J Forecast 11:133–145

    Article  Google Scholar 

  13. Daszykowski M, Walczak B, Massart DL (2002) Representative subset selection. Anal Chim Acta 468:91–103

    Article  Google Scholar 

  14. Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521

    Article  Google Scholar 

  15. Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process Int J 19:507–515. https://doi.org/10.1002/hyp.5675

    Article  Google Scholar 

  16. El Khalki E, Tramblay Y, Saidi ME et al (2018) Comparison of modeling approaches for flood forecasting in the High Atlas Mountains of Morocco. Arab J Geosci 11:15. https://doi.org/10.1007/s12517-018-3752-7

    Article  Google Scholar 

  17. Garen DC, Moore DS (2005) Curve number hydrology in water quality modeling: uses, abuses, and future directions 1. JAWRA J Am Water Resour Assoc 41:377–388

    Article  Google Scholar 

  18. Gaume E, Bain V, Bernardara P et al (2009) A compilation of data on European flash floods. J Hydrol 367:70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028

    Article  Google Scholar 

  19. Geetha K, Mishra SK, Eldho TI et al (2007) Modifications to SCS-CN method for long-term hydrologic simulation. J Irrig Drain Eng 133:475–486. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:5(475)

    Article  Google Scholar 

  20. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  21. Hawkins RH, Hjelmfelt AT, Zevenbergen AW (1985) Runoff probability, storm depth, and curve numbers. J Irrig Drain Eng 111:330–340. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:4(330)

    Article  Google Scholar 

  22. Hayami S (1951) On the propagation of flood waves. Bull Disaster Prev Res Inst Kyoto Univ 1(1):1–16

    Google Scholar 

  23. Hdeib R, Abdallah C, Colin F et al (2018) Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions. J Hydrol 565:160–176. https://doi.org/10.1016/j.jhydrol.2018.08.008

    Article  Google Scholar 

  24. Hebal A, Remini B (2011) Choix du modèle fréquentiel le plus adéquat à l’estimation des valeurs extrêmes de crues (cas du nord de L’Algérie). Can J Civ Eng 38:881–892

    Article  Google Scholar 

  25. Hossain S, Hewa GA, Wella-Hewage S (2019) A comparison of continuous and event-based rainfall-runoff (RR) modelling using EPA-SWMM. Water 11:611. https://doi.org/10.3390/w11030611

    Article  Google Scholar 

  26. Hughes DA (2011) Regionalization of models for operational purposes in developing countries: an introduction. Hydrol Res 42:331–337

    Article  Google Scholar 

  27. Hundecha Y, Bárdossy A (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol 292:281–295

    Article  Google Scholar 

  28. Kim Y-O, Jeong D, Ko IH (2006) Combining rainfall-runoff model outputs for improving ensemble streamflow prediction. J Hydrol Eng 11:578–588

    Article  Google Scholar 

  29. Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31:13–24

    Article  Google Scholar 

  30. Li Z, Yu J, Xu X et al (2018) Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China. Proc Int Assoc Hydrol Sci 379:335

    Google Scholar 

  31. Llasat MC, Llasat-Botija M, Prat MA et al (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55. https://doi.org/10.5194/adgeo-23-47-2010

    Article  Google Scholar 

  32. Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modelling. In: Institute of Engineers Australia National Conference, pp 89–93

  33. Madsen H (2000) Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J Hydrol 235:276–288. https://doi.org/10.1016/S0022-1694(00)00279-1

    Article  Google Scholar 

  34. Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv Water Resour 26:205–216

    Article  Google Scholar 

  35. Maref N, Seddini A (2018) Modeling of flood generation in semi-arid catchment using a spatially distributed model: case of study Wadi Mekerra catchment (Northwest Algeria). Arab J Geosci 11:116

    Article  Google Scholar 

  36. Massari C, Brocca L, Barbetta S et al (2014) Using globally available soil moisture indicators for flood modelling in Mediterranean catchments. Hydrol Earth Syst Sci 18:839–853. https://doi.org/10.5194/hess-18-839-2014

    Article  Google Scholar 

  37. McIntyre N, Lee H, Wheater H et al (2005) Ensemble predictions of runoff in ungauged catchments. Water Resour Res 41:W12434. https://doi.org/10.1029/2005WR004289

    Article  Google Scholar 

  38. McLeod AI, Noakes DJ, Hipel KW, Thompstone RM (1987) Combining hydrologic forecasts. J Water Resour Plan Manag 113:29–41

    Article  Google Scholar 

  39. Meddi M, Toumi S, Assani AA (2017) Application of the L-moments approach to the analysis of regional flood frequency in Northern Algeria. Int J Hydrol Sci Technol 7:77. https://doi.org/10.1504/IJHST.2017.080959

    Article  Google Scholar 

  40. Mei Y, Anagnostou EN (2015) A hydrograph separation method based on information from rainfall and runoff records. J Hydrol 523:636–649. https://doi.org/10.1016/j.jhydrol.2015.01.083

    Article  Google Scholar 

  41. Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour Res. https://doi.org/10.1029/2004WR003191

    Article  Google Scholar 

  42. Mishra SK, Singh VP (2002a) SCS-CN-based hydrologic simulation package. In: Singh VP, Frevert DK (eds) Math Model Small Watershed Hydrol Appl 2841:391–464

  43. Mishra SK, Singh VP (2002b) SCS-CN method. Part I: derivation of SCS-CN-based models. Acta Geophys Polon 50(3):457–477

    Google Scholar 

  44. Mishra SK, Singh VP, Sansalone JJ, Aravamuthan V (2003) A modified SCS-CN method: characterization and testing. Water Resour Manag 17:37–68. https://doi.org/10.1023/A:1023099005944

    Article  Google Scholar 

  45. Mishra SK, Sahu RK, Eldho TI, Jain MK (2006) An improved IaS relation incorporating antecedent moisture in SCS-CN methodology. Water Resour Manag 20:643–660. https://doi.org/10.1007/s11269-005-9000-4

    Article  Google Scholar 

  46. Mishra SK, Jain MK, Suresh Babu P et al (2008) Comparison of AMC-dependent CN-conversion formulae. Water Resour Manag 22:1409–1420. https://doi.org/10.1007/s11269-007-9233-5

    Article  Google Scholar 

  47. Mishra SK, Singh VP, Singh PK (2018) Revisiting the soil conservation service curve number method. In: Hydrologic modeling. Springer, pp 667–693

  48. Mora CR, Schimleck LR (2008) On the selection of samples for multivariate regression analysis: application to near-infrared (NIR) calibration models for the prediction of pulp yield in Eucalyptus nitens. Can J For Res 38:2626–2634

    Article  Google Scholar 

  49. Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  50. Moussa R, Bocquillon C (1996) Algorithms for solving the diffusive wave flood routing equation. Hydrol Process 10:105–123. https://doi.org/10.1002/(SICI)1099-1085(199601)10:1%3c105:AID-HYP304%3e3.0.CO;2-P

    Article  Google Scholar 

  51. Moussa R, Chahinian N (2009) Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrol Earth Syst Sci 13:519–535. https://doi.org/10.5194/hess-13-519-2009

    Article  Google Scholar 

  52. NASA/METI/AIST/Japan Spacesystems, U.S./Japan ASTER Science Team (2009) ASTER global digital elevation model [Data set]. https://doi.org/10.5067/ASTER/ASTGTM.002

  53. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/S0022-1694(03)00225-7

    Article  Google Scholar 

  54. Pilon PJ (2002) Guidelines for reducing flood losses. United Nations International Strategy for Disaster Reduction (UNISDR)

  55. Ponce VM, Hawkins RH (1996) Runoff curve number: Has it reached maturity? J Hydrol Eng 1:11–19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)

    Article  Google Scholar 

  56. Puzyn T, Mostrag-Szlichtyng A, Gajewicz A et al (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22:795–804. https://doi.org/10.1007/s11224-011-9757-4

    Article  Google Scholar 

  57. Sahu RK, Mishra SK, Eldho TI (2010) An improved AMC-coupled runoff curve number model. Hydrol Process 24:2834–2839. https://doi.org/10.1002/hyp.7695

    Article  Google Scholar 

  58. Sahu RK, Mishra SK, Eldho TI (2012) Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India. ISH J Hydraul Eng 18:27–36. https://doi.org/10.1080/09715010.2012.662425

    Article  Google Scholar 

  59. SCS (1972) SCS national engineering handbook. Section 4, Hydrology. In: National engineering handbook

  60. Shamseldin AY, O’connor KM (1999) A real-time combination method for the outputs of different rainfall-runoff models. Hydrol Sci J 44:895–912

    Article  Google Scholar 

  61. Shi Z-H, Chen L-D, Fang N-F et al (2009) Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena 77:1–7. https://doi.org/10.1016/j.catena.2008.11.006

    Article  Google Scholar 

  62. Singh SKMVP (1999) Behaviour of SCS-CN method in C-l’a-x spectrum. In: Hydrologic modeling: proceedings of the international conference on water, environment, ecology, socio-economics, and health engineering (WEESHE): October 18–21, 1999, Seoul National University, Seoul, Korea. Water Resources Publication, p 112

  63. Singh PK, Mishra SK, Berndtsson R et al (2015) Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resour Manag 29:4111–4127. https://doi.org/10.1007/s11269-015-1048-1

    Article  Google Scholar 

  64. Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19:415–428

    Article  Google Scholar 

  65. Sobhani G (1976) A review of selected small watershed design methods for possible adoption to Iranian conditions

  66. Soulis KX, Valiantzas JD, Dercas N, Londra PA (2009) Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol Earth Syst Sci 13:605–615. https://doi.org/10.5194/hess-13-605-2009

    Article  Google Scholar 

  67. Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370. https://doi.org/10.1016/0022-1694(94)02540-R

    Article  Google Scholar 

  68. Todini E (1988) Rainfall-runoff modeling: past, present and future. J Hydrol 100:341–352. https://doi.org/10.1016/0022-1694(88)90191-6

    Article  Google Scholar 

  69. Todini E (2011) History and perspectives of hydrological catchment modelling. Hydrol Res 42:73–85. https://doi.org/10.2166/nh.2011.096

    Article  Google Scholar 

  70. Tramblay Y, Bouvier C, Martin C et al (2010) Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling. J Hydrol 387:176–187. https://doi.org/10.1016/j.jhydrol.2010.04.006

    Article  Google Scholar 

  71. Tramblay Y, Bouaicha R, Brocca L et al (2012) Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol Earth Syst Sci 16:4375. https://doi.org/10.5194/hess-16-4375-2012

    Article  Google Scholar 

  72. Velázquez JA, Anctil F, Perrin C (2010) Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments. Hydrol Earth Syst Sci 14:2303–2317

    Article  Google Scholar 

  73. Verma S, Mishra SK, Singh A et al (2017a) An enhanced SMA based SCS-CN inspired model for watershed runoff prediction. Environ Earth Sci 76:736. https://doi.org/10.1007/s12665-017-7062-2

    Article  Google Scholar 

  74. Verma S, Verma RK, Mishra SK et al (2017b) A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation. Hydrol Sci J 62:1891–1930. https://doi.org/10.1080/02626667.2017.1334166

    Article  Google Scholar 

  75. Wang L, Wu JQ, Elliot WJ et al (2014) Linear diffusion-wave channel routing using a discrete Hayami convolution method. J Hydrol 509:282–294. https://doi.org/10.1016/j.jhydrol.2013.11.046

    Article  Google Scholar 

  76. WMO (2004) Associated program on flood management. Technical Support Unit (ed). Associated Programme on Flood Management Technical Document No. 1, 2nd edn

  77. Zema DA, Labate A, Martino D, Zimbone SM (2017) Comparing different infiltration methods of the HEC-HMS model: the case study of the Mésima Torrent (Southern Italy). Land Degrad Dev 28:294–308

    Article  Google Scholar 

  78. Zeroual A, Meddi M, Assani AA (2016) Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions. Water Resour Manag 30:3191–3205. https://doi.org/10.1007/s11269-016-1340-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the National Water Agency (Agence Nationale des resources Hydraulique, ANRH) for providing available data of RR events.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ishak Abdi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Michael Nones, Ph.D. (CO-EDITOR-I/N-CHIEF)/Luigi Cimorelli, Ph.D. (ASSOCIATE EDITOR)/Renata J. Romanowicz (ASSOCIATE EDITOR).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdi, I., Meddi, M. Study on the applicability of the SCS-CN-based models to simulate floods in the semi-arid watersheds of northern Algeria. Acta Geophys. (2020). https://doi.org/10.1007/s11600-020-00511-3

Download citation

Keywords

  • AMC
  • AMA
  • Event-based
  • Flood prediction
  • RR model
  • SCS-CN