Comparison of emissivity retrieval methods from ASTER data using Fourier-Transform Infrared Spectroscopy

Abstract

Land surface emissivity retrieval is important for the remote identification of natural materials and can be used to identify the presence of silicate minerals. However, its estimation from passive sensors involves an undetermined function related to radiance data, which is influenced by the atmosphere. We tested three methods for temperature emissivity retrieval in a dune field composed of 99.53% quartz (SiO2) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The tested methods were the reference channel method (RCM), emissivity normalization method (ENM), and temperature emissivity separation (TES) method. An average quartz reference spectrum for the dune samples was calculated from an emissivity database based on temperature and used to evaluate the emissivity products of four ASTER images. In general, the three tested methods had a good approximation when analysed the emissivity reference curve, especially for longer wavelengths that ranged between 2 and 4% of emissivity. The RCM and ENM produced very similar results with the coefficients of determination (R2) as 0.9960 (RMSE 0.0184) and 0.9959 (RMSE 0.0185), respectively. RCM method presented superior results (R2: 0.9960, RMSE: 0.0184), compared to the TES method (R2: 0.9947, RMSE: 0.0197). The TES method showed good results only for shorter wavelengths and, hence, to identify specific targets using ASTER data, such as silicate minerals, it is better to use the RCM method. The emissivity value selected at the saturation point of the spectral library based on temperature is fundamental in acquiring more reliable data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andrade L (2011) Estimativa de temperatura e emissividade com imagens do sensor HSS (Hyperspectral Scanner System) e suas relações com materiais urbanos. Master’s Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil

  2. Berk A, Anderson GP, Acharya PK, Shettle EP (2011) MODTRAN®5.2.1 user’s manual. Burlington, MA, USA: Spectral Sciences Inc

  3. Chen F, Yang S, Su Z, Wang K (2016) Effect of emissivity uncertainly on surface temperature retrieval over urban areas: investigations based on spectral libraries. ISPRS J Photogram Remote Sens 114:53–66. https://doi.org/10.1016/j.isprsjprs.2016.01.007

    Article  Google Scholar 

  4. Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL, Ruff SW, Stefanov WL (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res 105:9735–9739. https://doi.org/10.1029/1998JE000624

    Article  Google Scholar 

  5. Coll C, Caselles V, Valor E, Niclòs R, Sánchez JM, Galve JM, Mira M (2007) Temperature and emissivity separation from ASTER data for low spectral contrast surfaces. Remote Sens Environ 110:162–175. https://doi.org/10.1016/j.rse.2007.02.008

    Article  Google Scholar 

  6. Coll C, Galve JM, Sanchez JM, Caselles V (2010) Validation of Landsat-7/ETM + thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans Geosci Remote Sens 48:547–555. https://doi.org/10.1109/TGRS.2009.2024934

    Article  Google Scholar 

  7. Collins EF, Roberts Dar A, Borel CC (2001) Spectral mixture analysis of simulated thermal infrared spectrometry data: an initial temperature estimate bounded TESSMA search approach. IEEE Trans Geosci Remote Sens 39:1435–1446. https://doi.org/10.1109/36.934075

    Article  Google Scholar 

  8. Constantino D, Angelini MG (2016) Thermal monitoring using an ASTER image. J Appl Remote Sens 10(4):046031. https://doi.org/10.1117/1.JRS.10.046031

    Article  Google Scholar 

  9. Costa BSC, Rocha NS, Silva SCS, Molmann Junior RA, Munchow GB, Silveira VC, Rolim SBA, Alves RCM, Kafer P, Diaz LR (2018) The use of the Weather Research and Forecasting Model to estimate the vertical profile of meteorological data. In: international geoscience and remote sensing symposium, IGARSS 2018, the 38th annual symposium of the IEEE Geoscience and Remote Sensing Society (GRSS), 2018, Valencia, Spain

  10. Dash P, Göttsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int J Remote Sens 23(13):2563–2594. https://doi.org/10.1080/01431160110115041

    Article  Google Scholar 

  11. Dash P, Gottsche FM, Olesen FS, Fischer H (2005) Separating surface emissivity and temperature using two-channel spectral indices and emissivity composites and comparison with a vegetation fraction method. Remote Sens Environ 96:1–17. https://doi.org/10.1016/j.rse.2004.12.023

    Article  Google Scholar 

  12. Exelis Visual Information Solutions I (2015) Exelis visual information solutions I. ENVI software version 5.3. Boulder, CO, USA

  13. Gillespie AR (1985) Lithologic mapping of silicate rocks using TIMS. In: Abbott EA (ed) Proceedings of the TIMS data user’s workshop. Jet Propulsion Laboratory, Pasadena, pp 29–44

  14. Gillespie A, Kahle A, Walker R (1986) Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sens Environ 20:209–235. https://doi.org/10.1016/0034-4257(86)90044-1

    Article  Google Scholar 

  15. Gillespie A, Rokugawa S, Matsunaga T, Cothern J, Hook S, Kahle A (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36:1113–1126. https://doi.org/10.1109/36.700995

    Article  Google Scholar 

  16. Gillespie AR, Rokugawa S, Hook SJ, Matsunaga T, Kahle B (1999) Temperature/emissivity separation algorithm theoretical basis document, version 2.4, contract NAS5-31372, NASA, Washington, DC, USA

  17. Gillespie A, Abbott E, Gilson L, Hulley G, Jimenez-Munoz J, Sobrino J (2011) Residual errors in ASTER temperature and emissivity products AST08 and AST05. Remote Sens Environ 115:3681–3694. https://doi.org/10.1016/j.rse.2011.09.007

    Article  Google Scholar 

  18. Hook SJ, Kahle AB (1996) The Micro Fourier Transform Interferometer (µFTIR): a new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sens Environ 56:172–181. https://doi.org/10.1016/0034-4257(95)00231-6

    Article  Google Scholar 

  19. Hunt G, Vincent R (1980) The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes. J Geophys Res 73:6039–6046. https://doi.org/10.1029/jb073i018p06039

    Article  Google Scholar 

  20. Käfer PS, Rolim SB, Iglesias ML, Rocha NS, Diaz LR (2019) Land surface temperature retrieval by LANDSAT 8 thermal band: applications of laboratory and field measurements. IEEE J Select Top Appl Earth Obser Remote Sens. https://doi.org/10.1109/JSTARS.2019.2913822

    Article  Google Scholar 

  21. Kahle A, Alley R (1992) Separation of temperature and emittance in remotely sensed radiance measurements. Remote Sens Environ 42:107–111. https://doi.org/10.1016/0034-4257(92)90093-Y

    Article  Google Scholar 

  22. Kahle A, Madura D, Soha J (1980) Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl Opt 19:2279–2290. https://doi.org/10.1364/AO.19.002279

    Article  Google Scholar 

  23. Kealy P, Gabell A (1990) Estimation of emissivity and temperature using alpha coefficients. In: Proceedings of 2nd TIMS workshop, jet propulsion laboratory, Pasadena, California, pp 90–55

  24. Kealy P, Hook S (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans Geosci Remote Sens 31:1155–1164. https://doi.org/10.1109/36.317447

    Article  Google Scholar 

  25. Korb A, Dybwad P, Wadsworth W, Salisbury J (1996) Portable FTIR spectrometer for field measurements of radiance and emissivity. Appl Opt 35:1679–1692. https://doi.org/10.1364/AO.35.001679

    Article  Google Scholar 

  26. Korb A, Salisbury JW, D’Ária DM (1999) Thermal-infrared remote sensing and Kirchhoff’s law 2. Field measurements. J Geophys Res-Solid Earth 104:339–350. https://doi.org/10.1029/97JB03537

    Article  Google Scholar 

  27. Li Z, Becker F, Stoll M, Wan Z (1999) Evaluating six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens Environ 69:197–214. https://doi.org/10.1016/S0034-4257(99)00049-8

    Article  Google Scholar 

  28. Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013a) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37. https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  29. Li Z, Wu H, Wang N, Qiu S, Sobrino J, Wan Z, Tang B, Yan G (2013b) Land surface emissivity retrieval from satellite data. Int J Remote Sens 34:3084–3127. https://doi.org/10.1080/01431161.2012.716540

    Article  Google Scholar 

  30. NASA (2019) https://asterweb.jpl.nasa.gov/swir-alert.asp. Accessed 23 May 2019

  31. NASA LP DAAC (2015) ASTER level 1 precision terrain corrected registered at-sensor radiance V003 [Terra ASTER]. NASA EOSDIS Land Processes DAAC. doi: https://doi.org/10.5067/ASTER/AST_L1T.003

  32. NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. ASTER Level 2 Emissivity Product, distributed by NASA EOSDIS Land Processes DAAC (2001) https://doi.org/10.5067/aster/ast_05.003

  33. ONTAR (2009) PcModWin© Manual. Version 5.0 v2ro. North Andover, MA, USA: Ontar Corporation

  34. Rolim SBA, Grondona A, Hackmann CL, Rocha C (2016) A review of temperature and emissivity retrieval methods: applications and restrictions. Am J Environ Eng 6:119–128. https://doi.org/10.5923/s.ajee.201601.18

    Article  Google Scholar 

  35. Salisbury JW, Hapke B, Eastes J (1987) Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces. J Geophys Res-Solid Earth 92:702–710. https://doi.org/10.1029/JB092iB01p00702

    Article  Google Scholar 

  36. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Tech. Note NCAR/TN-475 + STR

  37. Sobrino JA, Jiménez-Muñoz JC (2002) Surface emissivity retrieval from digital airborne imaging spectrometer data. J Geophys Res 107(D23):4729. https://doi.org/10.1029/2002JD002197

    Article  Google Scholar 

  38. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM5. Remote Sens Environ 90:434–440. https://doi.org/10.1016/j.rse.2004.02.003

    Article  Google Scholar 

  39. Sobrino J, Jiménez-Muñoz J, Sória G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P (2008) Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans Geosci Remote Sens 48:316–327. https://doi.org/10.1109/TGRS.2007.904834

    Article  Google Scholar 

  40. Tomazelli L, Dillenburg S, Guimarães E, Correa M (2008) Geomorfologia e potencial de preservação dos campos de dunas transgressivos de Cidreira e Itaipeva, Litoral Norte do Rio Grande do Sul. Rev Pesquisas em Geociências 32:47–55

    Article  Google Scholar 

  41. Wang F, Qin Z, Song C, Tu L, Karnieli A, Zhao S (2015) An improved mono-window algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data. Remote Sens 7:4268–4289. https://doi.org/10.3390/rs70404268

    Article  Google Scholar 

  42. Watson K (1992) Spectral ratio method for measuring emissivity. Remote Sens Environ 42:113–116. https://doi.org/10.1016/0034-4257(92)90094-Z

    Article  Google Scholar 

Download references

Acknowledgments

The ASTER 1T and AST_05 products were a courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, [https://lpdaac.usgs.gov/]. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES), finance code 001, and FAPERGS research foundation, Project: 2275-2551/14-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bijeesh Kozhikkodan Veettil.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rolim, S.B.A., Veettil, B.K., Käfer, P.S. et al. Comparison of emissivity retrieval methods from ASTER data using Fourier-Transform Infrared Spectroscopy. Acta Geophys. (2020). https://doi.org/10.1007/s11600-020-00498-x

Download citation

Keywords

  • Land surface emissivity
  • ASTER data
  • Thermal infrared
  • Quartz