Principal Slip Zone determination in the Wenchuan earthquake Fault Scientific Drilling project-hole 1: considering the Bayesian discriminant function

Abstract

Accurate determination of the Principal Slip Zone (PSZ) of earthquake fault zones is a key task of earthquake Fault Scientific Drilling for future earthquake control. The fault zone structure of Wenchuan earthquake is complex, and there are many strong earthquakes recorded on the fault zone, which make determining the PSZ in the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1) difficult. At present, core analysis of whole coring is the decisive method for determining PSZ depth, and the fresh fault gouge at 589.2 m is the PSZ in WFSD-1. Abundant and comprehensive logging data can only be used as evidence to judge the PSZ. Based on the discrimination function and hyperplane equation in Bayesian discriminant classification, we derive a new algorithm for computing the PSZ possibility using a Bayesian Discrimination function (PSZP-BDF) based on the simplified model, and set up a mode to determine the PSZ directly using machine learning of well logging. For the verification of WFSD-1, the fault gouges are successfully identified and the PSZ depth is accurately located. The algorithm objectively learns the sample data, which is naturally adaptive to the region. The calculation procedure is simple and does not require expensive coring data or heavy core tests in the well. The calculation speed is fast, using multiple physical data types. The PSZP-BDF algorithm is suitable for processing and interpreting earthquake fault scientific drilling data.

This is a preview of subscription content, log in to check access.

Fig. 1

Modified from Konaté et al. (2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Brodsky EE, Kuo-Fong M, Jim M et al (2009) Rapid response fault drilling past, present, and future. Sci Drill 8(8):66–74

    Article  Google Scholar 

  2. Gratier JP, Favreau P, Renard F (2003) Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. J Geophys Res 108(B2):1–25

    Article  Google Scholar 

  3. Han R, Shimamoto T, Hirose T et al (2007) Ultralow friction of carbonate faults caused by thermal decomposition. Science 316(5826):878–881

    Article  Google Scholar 

  4. Hirono T, Fujimoto K, Yokoyama T et al (2008) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett 35(16):L16303

    Article  Google Scholar 

  5. Hirose T, Shimamoto T (2005) Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. J Geophys Res (Solid Earth) 110:B05202

    Google Scholar 

  6. Kano Y, Mori J, Fujio R et al (2006) Heat signature on the chelungpu fault associated with the 1999 chi-chi, taiwan earthquake. Geophys Res Lett 33(14):L14306

    Article  Google Scholar 

  7. Konaté AA, Pan HP, Ma HL et al (2017) Use of spectral gamma ray as a lithology guide for fault rocks: a case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4). Appl Radiat Isotopes 128:75–85

    Article  Google Scholar 

  8. Lacroix B, Tesei T, Oliot E et al (2015) Early weakening processes inside thrust fault. Tectonics 34(7–8):1396–1411

    Article  Google Scholar 

  9. Li HB, Wang H, Xu ZQ et al (2013a) Characteristics of the fault-related rocks, fault zone structures and the principal slip zone of the wenchuan earthquake in wfsd drilling cores. Tectonophysics 584:23–42

    Article  Google Scholar 

  10. Li HB, Xu ZQ, Wang H et al (2013b) The Principle Slip Zone of the 2008 Wenchuan earthquake: a thrust fault oblique cutting the Yingxiu-Beichuan fault zone. Geol China 40(1):121–139

    Google Scholar 

  11. Li HB, Xu ZQ, Wang H et al (2018) Fault behavior, physical properties and seismic activity of the Wenchuan earthquake fault zone: evidences from the Wenchuan earthquake Fault Scientific Drilling project (WFSD). Chin J Geophys (in Chin) 61(5):1680–1697

    Google Scholar 

  12. Lin A, Maruyama T, Aaron S et al (2005) Propagation of seismic slip from brittle to ductile crust: evidence from pseudotachylyte of the Woodroffe thrust, central Australia. Tectonophysics 402(4):1–35

    Google Scholar 

  13. Liu XY, Chen XH, Li JY et al (2016) Reservoir physical property prediction based on kernel-Bayes discriminant method. Acta Petrol Sin 37:878–886

    Google Scholar 

  14. Ma KF, Tanaka H, Song SR et al (2006) Slip zone and energetics of a large earthquake from the taiwan chelungpu-fault drilling project. Nature 444(7118):473–476

    Article  Google Scholar 

  15. Mckenzie D, Brune JN (1972) Melting on fault planes during large earthquakes. Geophys J Roy Astron Soc 29(1):65–78

    Article  Google Scholar 

  16. Pei J, Li H, Wang H et al (2014) Magnetic properties of the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Sichuan Province, China. Earth Planets Space 66:23

    Article  Google Scholar 

  17. Peng ZG, Wu CQ, Aiken C (2011) Delayed triggering of microearthquakes by multiple surface waves circling the Earth. Geophys Res Lett 38(4):L04306

    Article  Google Scholar 

  18. Rabinowitz HS, Savage HM, Polissar PJ et al (2020) Earthquake slip surfaces identified by biomarker thermal maturity within the 2011 Tohoku-Oki earthquake fault zone. Nat Commun 11(1):533

    Article  Google Scholar 

  19. Ramoni M, Sebastiani P (2001) Robust Bayes classifiers. Artif Intell 125:207–224

    Article  Google Scholar 

  20. Sibson RH (2003) Thickness of the seismic slip zone. Bull Seismol Soc Am 93(3):1169–1178

    Article  Google Scholar 

  21. Spray JG (1992) A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204(3–4):205–221

    Article  Google Scholar 

  22. Tanaka H, Fujimoto K, Ohtani T et al (2001) Structural and chemical characterization of shear zones in the freshly activated Nojima fault, Awaji island, southwest Japan. J Geophys Res 106(B5):8789–8810

    Article  Google Scholar 

  23. Tsakalos E, Lin A, Kazantzaki M et al (2020) Absolute Dating of Past Seismic Events Using the OSL Technique on Fault Gouge Material—A Case Study of the Nojima Fault Zone, SW Japan. J Geophys Res: Solid Earth 125(8):1

    Article  Google Scholar 

  24. Wang CY (2007) Liquefaction beyond the near field. Seismol Res Lett 78(5):512–517

    Article  Google Scholar 

  25. Wang H, Li HB, Zhang L et al (2018) Pseudotachylytes in the Longmen Shan fault zone and fault weakening mechanisms. Chin J Geophys 61(5):1698–1714 (in Chinese)

    Google Scholar 

  26. Weaver KC, Doan ML, Cox SC et al (2019) Tidal behavior and water-level changes in gravel aquifers in response to multiple earthquakes: a case study from New Zealand. Water Resour Res 55(2):1263–1278

    Article  Google Scholar 

  27. Woodcock NH, Mort K (2008) Classification of fault breccias and related fault rocks. Geol Mag 145(3):435–440

    Article  Google Scholar 

  28. Xu ZQ, Wu ZL, Li HB et al (2018) The most rapid respond to a large earthquake—the Wenchuan earthquake Fault Scientific Drilling Project. Chin J Geophys 61(5):1666–1679 (in Chinese)

    Google Scholar 

  29. Xue L, Li HB, Brodsky EE et al (2013) Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 340(6140):1555–1559

    Article  Google Scholar 

  30. Zheng YC (2018) Transient pressure surge in a fluid-filled fracture. Bull Seismol Soc Am 108:1481–1488

    Article  Google Scholar 

  31. Zheng Y, Li H, Gong Z (2016) Geothermal study at the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1): borehole temperature, thermal conductivity, and well log data. J Asian Earth Sci 117:23–32

    Article  Google Scholar 

Download references

Acknowledgements

Sinan Fang is supported in part by the Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University (K2018-16) and China Postdoctoral Science Foundation (No. 2017 M622382). Zhi Wang is supported by the National Natural Science Foundation of China (No. 41604093).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sinan Fang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Zhang, Z., Wang, Z. et al. Principal Slip Zone determination in the Wenchuan earthquake Fault Scientific Drilling project-hole 1: considering the Bayesian discriminant function. Acta Geophys. (2020). https://doi.org/10.1007/s11600-020-00496-z

Download citation

Keywords

  • Wenchuan earthquake Fault Scientific Drilling (WFSD)
  • Principal Slip Zone (PSZ)
  • Bayesian discrimination
  • Logging