Lithospheric mantle anisotropy from local events beneath the Sunda–Banda arc transition and its geodynamic implications

Abstract

Shear wave splitting analysis to characterise lithospheric mantle anisotropy has been performed to provide better knowledge about lithospheric deformation and mantle flow beneath the Sunda–Banda arc transition, Indonesia. The tectonic setting of the study area is very complex characterised by the transition from subduction along Sunda arc to collision in Banda arc. The splitting measurements show lateral and vertical variation in the fast directions of the S-waves in this region. When the splitting results are analysed through 2D delay-time tomography and spatial averaging, systematic patterns in delay times and fast polarisation become more visible. In the subduction domain, the spatial averages of fast directions are dominated by two distinct fast polarisations: perpendicular and parallel to the plate motion for shallow and deep events, respectively. The results suggest that anisotropy in this area is not only controlled by anisotropic source related to the simple mantle flow model, but also by anisotropic fabric in the mantle deformed under influence of high stresses, high water contents and low temperatures. In addition, there might also be contribution from the anisotropic body in the upper layer. In the collision domain, spatially averaged fast directions show mostly perpendicular to the plate motion for all deep levels. For shallow level in this region, this trend is mainly governed by the lithospheric deformation process due to the continent-arc collision as also shown by delay time tomographic inversion. For deeper part of the region, the result of tomographic inversion and spatial averaging reveals a high anisotropy followed by rotational pattern of fast directions in the north of Timor. We suggest that this pattern might be related to the induced mantle flow due to lateral tearing of the slab.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Audley-Charles MG (1975) The Sumba fracture: a major discontinuity between Eastern and Western Indonesia. Tectonophysics 26:213–228. https://doi.org/10.1016/0040-1951(75)90091-8

    Article  Google Scholar 

  2. Audoine E, Savage MK, Gledhill K (2000) Seismic anisotropy from local earthquakes in the transition region from a subduction to a strike-slip plate boundary, New Zealand. J Geophys Res Solid Earth 105:8013–8033. https://doi.org/10.1029/1999JB900444

    Article  Google Scholar 

  3. Baccheschi P, Margheriti L, Steckler MS (2007) Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys Res Lett 34:L05302. https://doi.org/10.1029/2006GL028899

    Article  Google Scholar 

  4. Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana arc. J Geophys Res Solid Earth 113:B08S09. https://doi.org/10.1029/2007jb005423

    Article  Google Scholar 

  5. Barber AJ (1978) Structural interpretations of the island of Timor, eastern Indonesia. Proc Southeast Asia Pet Soc 4:9–21

    Google Scholar 

  6. Barber AJ, Audley-Charles MG, Carter DJ (1977) Thrust tectonics in Timor. J Geol Soc Aust 24:51–62. https://doi.org/10.1080/00167617708728966

    Article  Google Scholar 

  7. Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, McCaffrey R, Subarya C, Puntodewo SSO, Calais E (2003) Crustal motion in Indonesia from global positioning system measurements. J Geophys Res 108(B8):2367. https://doi.org/10.1029/2001JB000324

    Article  Google Scholar 

  8. Cagnioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res 112(B9):B09402. https://doi.org/10.1029/2007jb004934

    Article  Google Scholar 

  9. Charlton TR (1989) Stratigraphic correlation across an arc–continent collision zone: Timor and the Australian northwest shelf. Aust J Earth Sci 36:263–274. https://doi.org/10.1080/08120098908729485

    Article  Google Scholar 

  10. Collings R, Rietbrock A, Tilmann F, Lange D, Nippres S, Natawidjaja D (2013) Seismic anisotropy in the Sumatra subduction zone. J Geophys Res 118:5372–5390. https://doi.org/10.1002/jgrb.50157

    Article  Google Scholar 

  11. Crampin S (1991) Wave propagation through fluid-filled inclusions of various shapes: interpretation of extensive-dilatancy anisotropy. Geophys J Int 107:611–623. https://doi.org/10.1111/j.1365-246X.1991.tb05705.x

    Article  Google Scholar 

  12. Crampin S (1994) The fracture criticality of crustal rocks. Geophys J Int 118:428–438. https://doi.org/10.1111/j.1365-246X.1994.tb03974.x

    Article  Google Scholar 

  13. Curray JR (1989) The Sunda arc: a for oblique plate convergence. Neth J Sea Res 24:131–140. https://doi.org/10.1016/0077-7579(89)90144-0

    Article  Google Scholar 

  14. de Bremond DJ, Jaupart C, Sparks RSJ (1995) Distribution of volcanoes in active margins. J Geophys Res 100:20421–20432. https://doi.org/10.1029/95JB02153

    Article  Google Scholar 

  15. Di Leo JF, Wookey J, Hammond JOS, Kendall JM, Kaneshima S, Inoue H, Yamashina T, Harjadi P (2012) Mantle flow in regions of complex tectonics: insights from Indonesia. Geochem Geophys Geosyst 13:Q12008. https://doi.org/10.1029/2012GC004417

    Article  Google Scholar 

  16. Ely KS, Sandiford M (2010) Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea. Tectonophysics 483:112–124. https://doi.org/10.1016/j.tecto.2009.08.027

    Article  Google Scholar 

  17. Fischer KM, Yang X (1994) Anisotropy in Kuril-Kamchatka subduction zone structure. Geophys Res Lett 21:5–8. https://doi.org/10.1029/93GL03161

    Article  Google Scholar 

  18. Fischer KM, Wiens DA (1996) The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet Sci Lett 142:253–260. https://doi.org/10.1016/0012-821X(96)00084-2

    Article  Google Scholar 

  19. Fischer KM, Parmentier EM, Stine AR, Wolf ER (2000) Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J Geophys Res-Solid Earth 105:16181–16191. https://doi.org/10.1029/1999JB900441

    Article  Google Scholar 

  20. Fleury JM, Pubellier M, Urreiztieta M (2009) Structural expression of forearc crust uplift due to subducting asperity. Lithosphere 113:318–330. https://doi.org/10.1016/j.lithos.2009.07.007

    Article  Google Scholar 

  21. Fouch MJ, Fischer KM (1996) Mantle anisotropy beneath northwest Pacific subduction zones. J Geophys Res 101(15):987–16002. https://doi.org/10.1029/96JB00881

    Article  Google Scholar 

  22. GEOFON data centre (1993) GEOFON seismic network. Deutsches GeoForschungsZentrum GFZ. Other/Seismic Network. https://doi.org/10.14470/TR560404

  23. Gerst A, Savage MK (2004) Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool. Science 306(5701):1543–1547

    Article  Google Scholar 

  24. Gledhill K, Stuart G (1996) Seismic anisotropy in the fore-arc region of the Hikurangi subduction zone, New Zealand. Phys Earth Planet Inter 95:211–225. https://doi.org/10.1016/0031-9201(95)03117-0

    Article  Google Scholar 

  25. Greve SM, Savage MK, Hofmann SD (2008) Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand. Tectonophysics 462:7–21. https://doi.org/10.1016/j.tecto.2007.07.011

    Article  Google Scholar 

  26. Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–434. https://doi.org/10.1016/S1367-9120(01)00069-4

    Article  Google Scholar 

  27. Hammond JOS, Wookey J, Kaneshima S, Inoue H, Yamashina T, Harjadi P (2010) Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear-wave splitting. Phys Earth Planet Inter 178:189–201. https://doi.org/10.1016/j.pepi.2009.10.003

    Article  Google Scholar 

  28. Helmers J, Sopaheluwaken J, Tjokrosapoetro S, Nila ES (1989) High grade metamorphism related to peridotite emplacement near Atapupu, Timor, with reference to the Kaibobo peridotite on Seram, Indonesia. Neth J Sea Res 24:357–371. https://doi.org/10.1016/0077-7579(89)90161-0

    Article  Google Scholar 

  29. Hiramatsu Y, Ando M, Ishikawa Y (1997) ScS wave splitting of deep earthquakes around Japan. Geophys J Int 128:409–424. https://doi.org/10.1111/j.1365-246X.1997.tb01564.x

    Article  Google Scholar 

  30. Johnson JH, Savage MK, Townend J (2011) Distinguishing between stress-induced and structural anisotropy at mount ruapehu volcano, New Zealand. J Geophys Res Solid Earth 116(B12):1978–2012. https://doi.org/10.1029/2011JB008308

    Article  Google Scholar 

  31. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463. https://doi.org/10.1126/science.1062235

    Article  Google Scholar 

  32. Kaneshima S, Silver PG (1995) Anisotropic loci in the mantle beneath central Peru. Phys Earth Planet Inter 88:257–272. https://doi.org/10.1016/0031-9201(94)02981-G

    Article  Google Scholar 

  33. Karalliyadda SC, Savage MK (2013) Seismic anisotropy and lithospheric deformation of the plate-boundary zone in South Island, New Zealand: inferences from local S-wave splitting. Geophys J Int 193:507–530. https://doi.org/10.1093/gji/ggt022

    Article  Google Scholar 

  34. Karato S (2004) Mapping water content in the upper mantle. In: Eiler J (ed) Inside the subduction factory. American Geophysical Union, Washington, D.C

    Google Scholar 

  35. Karato S, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Plant Sci 36:59–95. https://doi.org/10.1146/Annurev.Earth.36.031207.124120

    Article  Google Scholar 

  36. Kaye SJ (1989) The structure of Eastern Indonesia: an approach via Gravity and other geophysical methods. Ph. D. Thesis, University of London

  37. Long MD (2013) Constraints on subduction geodynamics from seismic anisotropy. Rev Geophys 51:76–112. https://doi.org/10.1002/rog.20008

    Article  Google Scholar 

  38. Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318. https://doi.org/10.1126/science.1150809

    Article  Google Scholar 

  39. Long MD, Silver PG (2009) Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv Geophys 30:407–461. https://doi.org/10.1007/s10712-009-9075-1

    Article  Google Scholar 

  40. Long MD, van der Hilst RD (2005) Upper mantle anisotropy beneath Japan from shear wave splitting. Phys Earth Planet Inter 151:206–222. https://doi.org/10.1016/j.pepi.2005.03.003

    Article  Google Scholar 

  41. Long MD, van der Hilst RD (2006) Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Phys Earth Planet Inter 155:300–312. https://doi.org/10.1016/j.pepi.2006.01.003

    Article  Google Scholar 

  42. Lueschen E, Mueller C, Kopp H, Engels M, Lutz R, Planert L, Shulgin A, Djajadihardja Y (2011) Structure, evolution and tectonic activity at the Eastern Sunda forearc, Indonesia, from marine seismic investigations. Tectonophysics 508:1–4. https://doi.org/10.1016/j.tecto.2010.06.008

    Article  Google Scholar 

  43. Mardia KV (1972) Statistics of directional data. Academic Press, London and New York

    Google Scholar 

  44. McCaffrey R, Molnar P, Roecker SW (1985) Microearthquake seismicity and fault plane solutions related to arc-continent collision in the Eastern Sunda arc, Indonesia. J Geophys Res 90:4511–4528. https://doi.org/10.1029/JB090iB06p04511

    Article  Google Scholar 

  45. Miller MS, Allam A, Becker TW, Di Leo JF, Wookey J (2013) Constraints on the tectonic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis. Earth Planet Sci Lett 375:234–243. https://doi.org/10.1016/j.epsl.2013.05.036

    Article  Google Scholar 

  46. Nishimura S, Suparka S (1986) Tectonic development of East Indonesia. J Southest Asian Earth Sci 1:45–57. https://doi.org/10.1016/0743-9547(86)90006-1

    Article  Google Scholar 

  47. Nugroho H, Harris RA, Amin WL, Bilal M (2009) Plate boundary reorganization in the active Banda Arc–continent collision: insights from new GPS measurements. Tectonophysics 479:52–65. https://doi.org/10.1016/j.tecto.2009.01.026

    Article  Google Scholar 

  48. Nugraha AD, Ash-Shiddiqi H, Widiyantoro S, Ramdhan M, Wandono S, Handayani T, Nugroho H (2015) Preliminary results of teleseismic double-difference relocation of earthquakes around Indonesian archipelago region. AIP Conf Proc. https://doi.org/10.1063/1.4915010

    Article  Google Scholar 

  49. Okada T, Matsuzawa T, Hasegawa A (1995) Shear-wave polarisation anisotropy beneath the north-eastern part of Honshu, Japan. Geophys J Int 123:781–797. https://doi.org/10.1111/j.1365-246X.1995.tb06890.x

    Article  Google Scholar 

  50. Prawirodirdjo L, Bock Y (2004) Instantaneous global plate motion model from 12 years of continuous GPS observations. J Geophys Res 109:B08405. https://doi.org/10.1029/2003JB002944

    Article  Google Scholar 

  51. Rumpker G, Silver PG (1998) Apparent shear–wave splitting parameters in the presence of vertically varying anisotropy. Geophys J Int 135:790–800. https://doi.org/10.1046/j.1365-246X.1998.00660.x

    Article  Google Scholar 

  52. Savage MK (1999) Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys 37:65–106. https://doi.org/10.1029/98RG02075

    Article  Google Scholar 

  53. Savage MK, Peppin WA, Vetter UR (1990) Shear wave anisotropy and stress direction in and near long valley Caldera, California, 1979–1988. J Geophys Res 95:11165–11177. https://doi.org/10.1029/JB095iB07p11165

    Article  Google Scholar 

  54. Savage MK, Wessel A, Teanby NA, Hurst AW (2010) Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J Geophys Res 115:B12321. https://doi.org/10.1029/2010JB007722

    Article  Google Scholar 

  55. Shih XR, Meyer RP, Schneider JF (1991) Seismic anisotropy above a subducting plate. Geology 19:807–810. https://doi.org/10.1130/0091-7613(1991)019<0807:SAAASP>2.3.CO;2

    Article  Google Scholar 

  56. Shulgin A, Kopp H, Mueller C, Lueschen E, Planert L, Engels M, Flueh ER, Krabbenhoeft A, Djajadihardja Y (2009) Sunda–Banda arc transition: incipient continent–island arc collision (northwest Australia). Geophys Res Lett 36:L10304. https://doi.org/10.1029/2009GL037533

    Article  Google Scholar 

  57. Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432. https://doi.org/10.1146/annurev.earth.24.1.385

    Article  Google Scholar 

  58. Silver P, Chan G (1991) Shear wave splitting and subcontinental mantle deformation. J Geophys Res 96:16429–16454. https://doi.org/10.1029/91JB00899

    Article  Google Scholar 

  59. Silver PG, Savage MK (1994) The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophys J Int 119:949–963. https://doi.org/10.1111/j.1365-246X.1994.tb04027.x

    Article  Google Scholar 

  60. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962. https://doi.org/10.1126/science.277.5334.1956

    Article  Google Scholar 

  61. Syuhada S, Hananto ND, Abdullah CI, Puspito NT, Anggono T, Yudistira T (2016) Crustal structure along Sunda-Banda Arc transition zone from teleseismic receiver functions. Acta Geophys 64:2020–2050. https://doi.org/10.1515/acgeo-2015-0098

    Article  Google Scholar 

  62. Syuhada S, Hananto ND, Abdullah CI, Puspito NT, Anggono T, Yudistira T, Ramdhan M (2017) Crustal Anisotropy along the Sunda–Banda Arc transition zone from shear wave splitting measurements. J Geodyn 103:1–11. https://doi.org/10.1016/j.jog.2016.10.006

    Article  Google Scholar 

  63. Teanby NA, Kendall JM, van der Baan M (2004) Automation of shear-wave splitting measurements using cluster analysis. Bull Seismol Soc Am 94:453–463. https://doi.org/10.1785/0120030123

    Article  Google Scholar 

  64. Vinnik LP, Kosarev GL, Makeyeva LI (1984) Anisotropy of the lithosphere from the observations of SKS and SKKS. Proc Acad Sci USSR 278:1335–1339

    Google Scholar 

  65. Wensink H (1994) Paleomagnetism of rocks from Sumba: tectonic implications since the late Cretaceous. J Southest Asian Earth Sci 9:51–65. https://doi.org/10.1016/0743-9547(94)90065-5

    Article  Google Scholar 

  66. Wirth E, Long MD (2010) Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones. Phys Earth Planet Inter 181:141–154. https://doi.org/10.1016/j.pepi.2010.05.006

    Article  Google Scholar 

  67. Yang X, Fischer KM, Abers GA (1995) Seismic anisotropy beneath the Shumagin Islands segment of the Aleutian-Alaska subduction zone. J Geophys Res 100:18165–18177. https://doi.org/10.1029/95JB01425

    Article  Google Scholar 

Download references

Acknowledgements

We thank LIPI and ITB for funding this research. We also thank Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) and GFZ German Research Center for Geosciences Potsdam for allowing us to use their seismogram data for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Syuhada Syuhada.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix

Appendix

See Figs. 17, 18, 19, 20.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Syuhada, S., Hananto, N.D., Abdullah, C.I. et al. Lithospheric mantle anisotropy from local events beneath the Sunda–Banda arc transition and its geodynamic implications. Acta Geophys. 68, 1565–1593 (2020). https://doi.org/10.1007/s11600-020-00486-1

Download citation

Keywords

  • Shear wave splitting
  • Seismic anisotropy
  • Mantle flow
  • Sunda–Banda arc transition zone