Skip to main content

Advertisement

Log in

Sea level prediction using climatic variables: a comparative study of SVM and hybrid wavelet SVM approaches

  • Research Article - Hydrology
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Climate change is expected to adversely affect the coastal ecosystem in many ways. One of the major consequences of climate change in coastal areas is sea level rise. In order to manage this problem efficiently, it is essential to obtain reasonably accurate estimates of future sea level. This study focuses essentially on the identification of climatic variables influencing sea level and sea level prediction. Correlation analysis and wavelet coherence diagrams were used for identifying the influencing variables, and support vector machine (SVM) and hybrid wavelet support vector machine (WSVM) techniques were used for sea level prediction. Sea surface temperature, sea surface salinity, and mean sea level pressure were observed to be the major local climatic variables influencing sea level. Halosteric effect is found to have a major impact on the sea level. The variables identified were subsequently used as predictors in both SVM and WSVM. WSVM employs discrete wavelet transform to decompose the variables before being input to the SVM model. The performance of both the models was compared using statistical measures such as root mean square error (RMSE), correlation coefficient (r), coefficient of determination (r2), average squared error, Nash–Sutcliffe efficiency, and percentage bias along with graphical indicators such as Taylor diagrams and regression error characteristic curves. Results indicate that the WSVM model predicted sea level with an RMSE of 0.029 m during the training and 0.040 m during the testing phases. The corresponding values for SVM are 0.043 m and 0.069 m, respectively. Also, the other statistical measures and graphical indicators suggest that WSVM technique outperforms the SVM approach in the prediction of sea level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

All data can be accessed from European Centre for Medium-Range Weather Forecasts (ECMWF) and Copernicus Marine Environment Monitoring Service (CMEMS) web portals.

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh G. Thampi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sithara, S., Pramada, S.K. & Thampi, S.G. Sea level prediction using climatic variables: a comparative study of SVM and hybrid wavelet SVM approaches. Acta Geophys. 68, 1779–1790 (2020). https://doi.org/10.1007/s11600-020-00484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00484-3

Keywords

Navigation