Skip to main content
Log in

Thin interbed AVA inversion based on a fast algorithm for reflectivity

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Zoeppritz equations form the theoretical basis of most existing amplitude variation with incident angle (AVA) inversion methods. Assuming that only primary reflections exist, that is, the multiples are fully suppressed and the transmission loss and geometric spreading are completely compensated for, Zoeppritz equations can be used to solve for the elastic parameters of strata effectively. However, for thin interbeds, conventional seismic data processing technologies cannot suppress the internal multiples effectively, nor can they compensate for the transmission loss accurately. Therefore, AVA inversion methods based on Zoeppritz equations or their approximations are not applicable to thin interbeds. In this study, we propose a prestack AVA inversion method based on a fast algorithm for reflectivity. The fast reflectivity method can compute the full-wave responses, including the reflection, transmission, mode conversion, and internal multiples, which is beneficial to the seismic inversion of thin interbeds. A further advantage of the fast reflectivity method is that the partial derivatives of the reflection coefficient with respect to the elastic parameters can be expressed as analytical solutions. Based on the Gauss–Newton method, we construct the objective function and model-updating formula considering sparse constraint, where the Jacobian matrix takes the form of an analytical solution, which can significantly accelerate the inversion convergence. We validate our inversion method using numerical examples and field seismic data. The inversion results demonstrate that the fast reflectivity-based inversion method is more effective for thin interbed models in which the wave-propagation effects, such as interval multiples, are difficult to eliminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are very grateful to the MWMC Group for processing the seismic data. We would also like to express thanks for the sponsorship of the National Natural Science Foundation of China (Nos 41574126 and U1910205).

Author information

Authors and Affiliations

Authors

Contributions

Each author has contributed to the present paper. Jun Lu conceived the idea of this research. Zhen Yang and Jun Lu designed and programmed the codes. Zhen Yang performed the simulation tests. Zhen Yang and Jun Lu applied the method to the field data and analyzed the inversion results. The paper was written by all the authors.

Corresponding author

Correspondence to Jun Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

Tn is the 6 × 6 delta matrix for the nth layer. The elements of Tn are formed from the Dunkin matrix, which is frequency independent. The following is a list of the 16 independent elements of the matrix Tn:

$$\begin{aligned} t_{11} & = - (p^{2} + q^{p} q^{s} )/\mu = t_{16} , \\ t_{12} & = - 2pq^{p} /\mu , \\ t_{13} & = - (p^{2} { - }q^{p} q^{s} )/\mu = { - }t_{14} , \\ t_{15} & = - 2pq^{s} /\mu , \\ t_{21} & = iq^{s} /\beta^{2} = - t_{23} = - t_{24} = - t_{26} , \\ t_{31} & = - ip(\Gamma + 2q^{p} q^{s} ) = t_{36} = t_{41} = t_{46} , \\ t_{32} & = - 4ip^{2} q^{p} , \\ t_{33} & = - ip(\Gamma { - }2q^{p} q^{s} ) = t_{43} = { - }t_{34} = { - }t_{44} , \\ t_{35} & = - 2i\Gamma q^{s} , \\ t_{42} & = - 2i\Gamma q^{p} , \\ t_{45} & = - 4ip^{2} q^{s} , \\ t_{{{5}1}} & = - iq^{p} /\beta^{2} = t_{53} = t_{54} = - t_{56} , \\ t_{61} & = - \mu (\Gamma^{2} + 4p^{2} q^{p} q^{s} ) = t_{66} , \\ t_{62} & = - 4\mu \Gamma pq^{p} , \\ t_{63} & = - \mu (\Gamma^{2} { - }4p^{2} q^{p} q^{s} ) = { - }t_{64} , \\ t_{65} & = - 4\mu \Gamma pq^{{\text{S}}} ,\;{\text{and}} \\ t_{22} & = t_{25} =t_{55} =t_{52} =0, \\ \end{aligned}$$

where \(\Gamma =2p^{2} - 1/\beta^{2}\), \(\mu =\rho \beta^{2}\), \(q^{{\text{P}}} = (\alpha^{{{ - }2}} - p^{2} )^{1/2}\), \(q^{{\text{S}}} = (\beta^{{{ - }2}} - p^{2} )^{1/2}\), and \(p = \sin \theta_{p} /\alpha = \sin \theta_{S} /\beta\).

\({\mathbf{T}}_{n}^{ - 1}\) is the inverse matrix of Tn. The elements of \({\mathbf{T}}_{n}^{ - 1}\) are simply a rearrangement of the elements of \({\mathbf{T}}_{n}\):

$${\mathbf{T}}_{n}^{ - 1} = \left[ {\begin{array}{*{20}c} {t_{61} } & {t_{51} } & {t_{31} } & {t_{31} } & {t_{21} } & {t_{11} } \\ { - t_{65} } & 0 & { - t_{45} } & { - t_{35} } & 0 & { - t_{15} } \\ { - t_{63} } & { - t_{51} } & { - t_{33} } & { - t_{33} } & {t_{21} } & { - t_{13} } \\ {t_{63} } & { - t_{51} } & {t_{33} } & {t_{33} } & {t_{21} } & {t_{13} } \\ { - t_{62} } & 0 & { - t_{42} } & { - t_{32} } & 0 & { - t_{12} } \\ {t_{61} } & { - t_{51} } & {t_{31} } & {t_{31} } & { - t_{21} } & {t_{11} } \\ \end{array} } \right].$$
(32)

Appendix 2

Partial derivation of En and Tn

In general, the incident angle of angle gather will be controlled within 90°. Therefore, the vertical slowness and En can be expressed as:

$$q^{{\text{P}}} = (\alpha^{{{ - }2}} - p^{2} )^{1/2} =\frac{{\cos \theta_{{\text{p}}} }}{\alpha }$$
(33)
$$q^{{\text{S}}} = (\beta^{{{ - }2}} - p^{2} )^{1/2} =\frac{{\cos \theta_{{\text{S}}} }}{\beta }$$
(34)
$${\mathbf{E}}_{n} = {\text{diag}}\left[ {\begin{array}{*{20}c} {{\text{e}}^{{ - i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha + \cos \theta_{{\text{S}}} /\beta )}} } & 1 & {{\text{e}}^{{ - i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha - \cos \theta_{{\text{S}}} /\beta )}} } & {{\text{e}}^{{i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha - \cos \theta_{{\text{S}}} /\beta )}} } & 1 & {{\text{e}}^{{i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha + \cos \theta_{{\text{S}}} /\beta )}} } \\ \end{array} } \right].$$
(35)

The partial derivative of En with respect to the parameters Mn can be calculated analytically:

$$\frac{{\partial {\mathbf{E}}_{n} }}{{\partial {\mathbf{M}}_{n} }}=\left\{ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{E}}_{n} }}{\partial \alpha }=i\omega d_{n} {\text{diag}}\left[ {\begin{array}{*{20}c} {A_{\alpha } {\text{e}}^{{ - i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha + \cos \theta_{{\text{S}}} /\beta )}} } & 0 & {B_{\alpha } {\text{e}}^{{ - i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha - \cos \theta_{{\text{S}}} /\beta )}} } & { - B_{\alpha } {\text{e}}^{{i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha - \cos \theta_{{\text{S}}} /\beta )}} } & 0 & { - A_{\alpha } {\text{e}}^{{i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha + \cos \theta_{{\text{S}}} /\beta )}} } \\ \end{array} } \right],} \\ {\frac{{\partial {\mathbf{E}}_{n} }}{\partial \beta }=i\omega d_{n} {\text{diag}}\left[ {\begin{array}{*{20}c} {A_{\beta } {\text{e}}^{{ - i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha + \cos \theta_{{\text{S}}} /\beta )}} } & 0 & {{\text{B}}_{\beta } {\text{e}}^{{ - i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha - \cos \theta_{{\text{S}}} /\beta )}} } & { - {\text{B}}_{\beta } {\text{e}}^{{i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha - \cos \theta_{{\text{S}}} /\beta )}} } & 0 & { - A_{\beta } {\text{e}}^{{i\omega d_{n} (\cos \theta_{{\text{p}}} /\alpha + \cos \theta_{{\text{S}}} /\beta )}} } \\ \end{array} } \right],} \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{E}}_{n} }}{\partial \rho } = 0} & , & {\begin{array}{*{20}c} {} & {} \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {} & {} \\ \end{array} } & {} \\ \end{array} } & {} \\ \end{array} } & {} \\ \end{array} } & {} \\ \end{array} } & {} \\ \end{array} } & {} \\ \end{array} } & {} \\ \end{array} } \\ \end{array} } & {} & {} & {} \\ \end{array} } & {} & {} & {} \\ \end{array} } & {} & {} & {} \\ \end{array} } & {} & {} & {} \\ \end{array} } & {} & {} & {} \\ \end{array} } & {} & {} & {} \\ \end{array} } \\ \end{array} } \right.$$
(36)

where

$$\left\{ {\begin{array}{*{20}l} {{\text{A}}_{\alpha } = \left( {\frac{{\cos \theta_{{\text{P}}} }}{{\alpha^{2} }} + \frac{{\cos \theta_{S} }}{\alpha \beta }} \right),} \hfill \\ {{\text{B}}_{\alpha } = \left( {\frac{{\cos \theta_{{\text{P}}} }}{{\alpha^{2} }} - \frac{{\cos \theta_{S} }}{\alpha \beta }} \right),} \hfill \\ {{\text{A}}_{\beta } = \left( {\frac{{\cos \theta_{{\text{P}}} }}{\alpha \beta } + \frac{{\cos \theta_{S} }}{{\beta^{2} }}} \right),} \hfill \\ {{\text{B}}_{\beta } = \left( {\frac{{\cos \theta_{{\text{P}}} }}{\alpha \beta } - \frac{{\cos \theta_{S} }}{{\beta^{2} }}} \right),} \hfill \\ \end{array} } \right.$$
(37)

in which α and β are the P- and S-wave velocities at the nth layer, respectively.

The partial derivatives of Fn-1 and Fn with respect to the parameters Mn can also be calculated analytically:

$$\frac{{\partial {\mathbf{F}}_{n} }}{{\partial {\mathbf{M}}_{n} }}=\frac{{\partial {\mathbf{T}}_{n}^{ - 1} }}{{\partial {\mathbf{M}}_{n} }}{\mathbf{T}}_{n + 1} ,$$
(38)
$$\frac{{\partial {\mathbf{F}}_{{n{ - }1}} }}{{\partial {\mathbf{M}}_{n} }}={\mathbf{T}}_{n - 1}^{ - 1} \frac{{\partial {\mathbf{T}}_{n} }}{{\partial {\mathbf{M}}_{n} }},$$
(39)

where

$$\frac{{\partial {\mathbf{T}}_{n} }}{{\partial {\mathbf{M}}_{n} }}=\left\{ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{T}}_{n} }}{\partial \alpha }} \\ {\frac{{\partial {\mathbf{T}}_{n} }}{\partial \beta }} \\ {\frac{{\partial {\mathbf{T}}_{n} }}{\partial \rho }} \\ \end{array} } \right..$$
(40)

The matrices \(\frac{{\partial {\mathbf{T}}_{n} }}{\partial \alpha }\), \(\frac{{\partial {\mathbf{T}}_{{n{ + }1}} }}{\partial \beta }\), and \(\frac{{\partial {\mathbf{T}}_{{n{ + }1}} }}{\partial \rho }\) contain 16 independent elements.

$$\begin{aligned} \frac{{\partial t_{11} }}{\partial \alpha } & = - \frac{4}{\alpha }t_{11} = \frac{{\partial t_{16} }}{\partial \alpha }, \\ \frac{{\partial t_{12} }}{\partial \alpha } & = - \frac{4}{\alpha }t_{12} , \\ \frac{{\partial t_{13} }}{\partial \alpha } & = - \frac{{4}}{\alpha }t_{13} = - \frac{{\partial t_{14} }}{\partial \alpha }, \\ \frac{{\partial t_{15} }}{\partial \alpha } & = - \frac{{4}}{\alpha }t_{15} , \\ \frac{{\partial t_{21} }}{\partial \alpha } & = - \frac{{3}}{\alpha }t_{21} = - \frac{{\partial t_{23} }}{\partial \alpha } = - \frac{{\partial t_{24} }}{\partial \alpha } = - \frac{{\partial t_{26} }}{\partial \alpha }, \\ \frac{{\partial t_{31} }}{\partial \alpha } & = - \frac{{3}}{\alpha }t_{31} = \frac{{\partial t_{36} }}{\partial \alpha } = \frac{{\partial t_{41} }}{\partial \alpha } = \frac{{\partial t_{46} }}{\partial \alpha }, \\ \frac{{\partial t_{32} }}{\partial \alpha } & = - \frac{3}{\alpha }t_{32} , \\ \frac{{\partial t_{33} }}{\partial \alpha } & = - \frac{{3}}{\alpha }t_{33} = \frac{{\partial t_{43} }}{\partial \alpha } = - \frac{{\partial t_{34} }}{\partial \alpha } = - \frac{{\partial t_{44} }}{\partial \alpha }, \\ \frac{{\partial t_{35} }}{\partial \alpha } & = - \frac{{3}}{\alpha }t_{35} , \\ \frac{{\partial t_{42} }}{\partial \alpha } & = - \frac{3}{\alpha }t_{42} , \\ \frac{{\partial t_{45} }}{\partial \alpha } & = - \frac{{3}}{\alpha }t_{45} , \\ \frac{{\partial t_{{{5}1}} }}{\partial \alpha } & = - \frac{{3}}{\alpha }t_{{{5}1}} = \frac{{\partial t_{{{53}}} }}{\partial \alpha } = \frac{{\partial t_{{{54}}} }}{\partial \alpha } = - \frac{{\partial t_{{{56}}} }}{\partial \alpha }, \\ \frac{{\partial t_{61} }}{\partial \alpha } & = - \frac{2}{\alpha }t_{61} = \frac{{\partial t_{66} }}{\partial \alpha }, \\ \frac{{\partial t_{62} }}{\partial \alpha } & = - \frac{2}{\alpha }t_{62} , \\ \frac{{\partial t_{{6{3}}} }}{\partial \alpha } & = - \frac{2}{\alpha }t_{{6{3}}} = - \frac{{\partial t_{64} }}{\partial \alpha }, \\ \frac{{\partial t_{65} }}{\partial \alpha } & = - \frac{2}{\alpha }t_{65} , \\ \frac{{\partial t_{22} }}{\partial \alpha } & = \frac{{\partial t_{25} }}{\partial \alpha }=\frac{{\partial t_{55} }}{\partial \alpha }=\frac{{\partial t_{52} }}{\partial \alpha }=0. \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial t_{11} }}{\partial \beta } & = - \frac{4}{\beta }t_{11} = \frac{{\partial t_{16} }}{\partial \beta }, \\ \frac{{\partial t_{12} }}{\partial \beta } & = - \frac{4}{\beta }t_{12} , \\ \frac{{\partial t_{13} }}{\partial \beta } & = - \frac{{4}}{\beta }t_{13} = - \frac{{\partial t_{14} }}{\partial \beta }, \\ \frac{{\partial t_{15} }}{\partial \beta } & = - \frac{{4}}{\beta }t_{15} , \\ \frac{{\partial t_{21} }}{\partial \beta } & = - \frac{{3}}{\beta }t_{21} = - \frac{{\partial t_{23} }}{\partial \beta } = - \frac{{\partial t_{24} }}{\partial \beta } = - \frac{{\partial t_{26} }}{\partial \beta }, \\ \frac{{\partial t_{31} }}{\partial \beta } & = - \frac{{3}}{\beta }t_{31} = \frac{{\partial t_{36} }}{\partial \beta } = \frac{{\partial t_{41} }}{\partial \beta } = \frac{{\partial t_{46} }}{\partial \beta }, \\ \frac{{\partial t_{33} }}{\partial \beta } & = - \frac{{3}}{\beta }t_{33} = \frac{{\partial t_{43} }}{\partial \beta } = - \frac{{\partial t_{34} }}{\partial \beta } = - \frac{{\partial t_{44} }}{\partial \beta }, \\ \frac{{\partial t_{35} }}{\partial \beta } & = - \frac{{3}}{\beta }t_{35} , \\ \frac{{\partial t_{42} }}{\partial \beta } & = - \frac{3}{\beta }t_{42} , \\ \frac{{\partial t_{45} }}{\partial \beta } & = - \frac{{3}}{\beta }t_{45} , \\ \frac{{\partial t_{{{5}1}} }}{\partial \beta } & = - \frac{{3}}{\beta }t_{{{5}1}} = \frac{{\partial t_{{{53}}} }}{\partial \beta } = \frac{{\partial t_{{{54}}} }}{\partial \beta } = - \frac{{\partial t_{{{56}}} }}{\partial \beta }, \\ \frac{{\partial t_{61} }}{\partial \beta } & = - \frac{2}{\beta }t_{61} = \frac{{\partial t_{66} }}{\partial \beta }, \\ \frac{{\partial t_{62} }}{\partial \beta } & = - \frac{2}{\beta }t_{62} , \\ \frac{{\partial t_{{6{3}}} }}{\partial \beta } & = - \frac{2}{\beta }t_{{6{3}}} = - \frac{{\partial t_{64} }}{\partial \beta }, \\ \frac{{\partial t_{65} }}{\partial \beta } & = - \frac{2}{\beta }t_{65} , \\ \frac{{\partial t_{22} }}{\partial \beta } & = \frac{{\partial t_{25} }}{\partial \beta }=\frac{{\partial t_{55} }}{\partial \beta }=\frac{{\partial t_{52} }}{\partial \beta }=0, \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial t_{11} }}{\partial \rho } & = - \frac{1}{\rho }t_{11} = \frac{{\partial t_{16} }}{\partial \rho }, \\ \frac{{\partial t_{12} }}{\partial \rho } & = - \frac{1}{\rho }t_{12} , \\ \frac{{\partial t_{13} }}{\partial \rho } & = - \frac{1}{\rho }t_{13} = - \frac{{\partial t_{14} }}{\partial \rho }, \\ \frac{{\partial t_{15} }}{\partial \rho } & = - \frac{1}{\rho }t_{15} , \\ \frac{{\partial t_{21} }}{\partial \rho } & =\frac{{\partial t_{22} }}{\partial \rho } = \frac{{\partial t_{23} }}{\partial \rho }=\frac{{\partial t_{24} }}{\partial \rho }=\frac{{\partial t_{25} }}{\partial \rho }=\frac{{\partial t_{26} }}{\partial \rho } = 0,\;\;\frac{{\partial t_{31} }}{\partial \rho }=\frac{{\partial t_{32} }}{\partial \rho } = \frac{{\partial t_{33} }}{\partial \rho }=\frac{{\partial t_{34} }}{\partial \rho }=\frac{{\partial t_{35} }}{\partial \rho }=\frac{{\partial t_{36} }}{\partial \rho } = 0, \\ \frac{{\partial t_{41} }}{\partial \rho } & =\frac{{\partial t_{42} }}{\partial \rho } = \frac{{\partial t_{43} }}{\partial \rho }=\frac{{\partial t_{44} }}{\partial \rho }=\frac{{\partial t_{45} }}{\partial \rho }=\frac{{\partial t_{46} }}{\partial \rho } = 0,\;\;\frac{{\partial t_{51} }}{\partial \rho }=\frac{{\partial t_{52} }}{\partial \rho } = \frac{{\partial t_{53} }}{\partial \rho }=\frac{{\partial t_{54} }}{\partial \rho }=\frac{{\partial t_{55} }}{\partial \rho }=\frac{{\partial t_{56} }}{\partial \rho } = 0, \\ \frac{{\partial t_{61} }}{\partial \rho } & = \frac{1}{\rho }t_{61} = \frac{{\partial t_{66} }}{\partial \rho },\;\;\frac{{\partial t_{62} }}{\partial \rho } = \frac{1}{\rho }t_{62} ,\;\;\frac{{\partial t_{63} }}{\partial \rho } = \frac{1}{\rho }t_{63} = { - }\frac{{\partial t_{64} }}{\partial \rho },\;\;\frac{{\partial t_{65} }}{\partial \rho } = \frac{1}{\rho }t_{63} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Lu, J. Thin interbed AVA inversion based on a fast algorithm for reflectivity. Acta Geophys. 68, 1007–1020 (2020). https://doi.org/10.1007/s11600-020-00448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00448-7

Keywords

Navigation