A new mathematical model to calculate the equilibrium scour depth around a pier


This paper sheds light on the formulation of a new equilibrium local scour depth equation around a pier. The total bed materials removed from the scour hole due to the force exerted by the flowing fluid after colliding with the pier in the flow field are estimated. At the equilibrium condition, the shape of the scour hole around the pier may take any form, viz. linear, circular, parabolic, triangular, or combination of different shapes. To consider that, two functions are assumed at the stoss and the lee sides of the pier. The total volume of bed materials removed from the scour hole of an arbitrary shape at the stoss and the lee sides of the pier is obtained by integrating the two functions. The equilibrium scour depth is formed by applying the energy balance theorem. An example problem is illustrated and the results are compared with the equations presented by Melville and Coleman (Bridge scour. Water Resources Publication, Colorado, 2000) and HEC-18 (Richardson and Davis in Evaluating scour at bridges, HEC-18. Technical report no. FHWA NHI, 2001).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. AASHTO, LRFD (2010) Bridge design specifications

  2. Afzal MS, Bihs H, Kamath A, Arntsen ØA (2015) Three-dimensional numerical modeling of pier scour under current and waves using level-set method. J Offshore Mech Arct Eng 137(3):032001. https://doi.org/10.1115/1.4029999

    Article  Google Scholar 

  3. Ahmad N, Bihs H, Chella MA, Arntsen ØA, Aggarwal A et al (2017) Numerical modelling of arctic coastal erosion due to breaking waves impact using REEF3D. In: The 27th international ocean and polar engineering conference. International Society of Offshore and Polar Engineers

  4. Arneson L, Zevenbergen L, Lagasse P, Clopper P (2012) Evaluating scour at bridges. HEC-18. Federal Highway Administration (FHWA)

  5. Bouratsis P, Diplas P, Dancey CL, Apsilidis N (2017) Quantitative spatio-temporal characterization of scour at the base of a cylinder. Water 9(3):227. https://doi.org/10.3390/w9030227

    Article  Google Scholar 

  6. Chabert J, Engeldinger P (1956) Study of scour around bridge piers. Technical report, prepared for the Laboratoire National d’Hydraulique

  7. Chang H (1988) Fluvial processes in river engineering. Wiley, New York

    Google Scholar 

  8. Dey S (1995) Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Sadhana 20(6):871–885. https://doi.org/10.1007/BF02745871

    Article  Google Scholar 

  9. Dey S (1996) Sediment pick-up for evolving scour near circular cylinders. Appl Math Model 20(7):534–539. https://doi.org/10.1016/0307-904X(95)00172-G

    Article  Google Scholar 

  10. Dey S (1997) Local scour at piers, part I: a review of developments of research. Int J Sediment Res 12(2):23–46

    Google Scholar 

  11. Dey S (2014) Scour. In: Fluvial hydrodynamics, Springer, Berlin, pp. 563–639. https://doi.org/10.1007/978-3-642-19062-9_10

    Google Scholar 

  12. Dey S, Bose S, Sastry G (1992a) Clear water scour at circular piers, part I: flow model. In: Proceedings of 8th conference on IAHR Asian and Pacific Division, pp 69–80

  13. Dey S, Bose S, Sastry G (1992b) Clear water scour at circular piers, part II: design formula. In: Proceedings of 8th conference on IAHR Asian and Pacific Division, pp 81–92

  14. Dey S, Bose SK (1994) Bed shear in equilibrium scour around a circular cylinder embedded in a loose bed. Appl Math Model 18(5):265–273. https://doi.org/10.1016/0307-904X(94)90334-4

    Article  Google Scholar 

  15. Dey S, Bose SK, Sastry GL (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(869)

    Article  Google Scholar 

  16. Dey S, Raikar RV (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(399)

    Article  Google Scholar 

  17. Ettema R, Melville BW, Constantinescu G (2011) Evaluation of bridge scour research: Pier scour processes and predictions. Citeseer

  18. Gioia G, Bombardelli FA (2005) Localized turbulent flows on scouring granular beds. Phys Rev Lett 95(1):014501

    Article  Google Scholar 

  19. Gioia G, Chakraborty P (2006) Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys Rev Lett 96(4):044502

    Article  Google Scholar 

  20. Graf W, Istiarto I (2002) Flow pattern in the scour hole around a cylinder. J Hydraul Res 40(1):13–20. https://doi.org/10.1080/00221680209499869

    Article  Google Scholar 

  21. Hafez YI (2016) Mathematical modeling of local scour at slender and wide bridge piers. J Fluids. https://doi.org/10.1155/2016/4835253

    Article  Google Scholar 

  22. Harik I, Shaaban A, Gesund H, Valli G, Wang S (1990) United states bridge failures, 1951–1988. J Perform Constr Facil 4(4):272–277. https://doi.org/10.1061/(ASCE)0887-3828(1990)4:4(272)

    Article  Google Scholar 

  23. Kamojjala S, Gattu N, Parola A, Hagerty D (1994) Analysis of 1993 upper Mississippi flood highway infrastructure damage. In: Water resources engineering, ASCE, pp 1061–1065

  24. Kattell J, Eriksson M (1998) Bridge scour evaluation: screening, analysis, and countermeasures. Technical report, USDA Forest Service, San Dimas Technology and Development Center

  25. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017) Interference of an upstream pier on local scour at downstream piers. Acta Geophys 65(1):29–46. https://doi.org/10.1007/s11600-017-0004-2

    Article  Google Scholar 

  26. Kothyari UC, Hager WH, Oliveto G (2007) Generalized approach for clear-water scour at bridge foundation elements. J Hydraul Eng 133(11):1229–1240. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1229)

    Article  Google Scholar 

  27. Lagasse PF (2007) Countermeasures to protect bridge piers from scour, vol 593, Transportation Research Board

  28. Lança RM, Fael CS, Maia RJ, Pêgo JP, Cardoso AH (2013) Clear-water scour at comparatively large cylindrical piers. J Hydraul Eng 139(11):1117–1125. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000788

    Article  Google Scholar 

  29. Manes C, Brocchini M (2015) Local scour around structures and the phenomenology of turbulence. J Fluid Mech 779:309–324. https://doi.org/10.1017/jfm.2015.389

    Article  Google Scholar 

  30. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication, Colorado

    Google Scholar 

  31. Melville BW, Raudkivi AJ (1977) Flow characteristics in local scour at bridge piers. J Hydraul Res 15(4):373–380. https://doi.org/10.1080/00221687709499641

    Article  Google Scholar 

  32. Mutlu Sumer B (2007) Mathematical modelling of scour: a review. J Hydraul Res 45(6):723–735. https://doi.org/10.1080/00221686.2007.9521811

    Article  Google Scholar 

  33. Nurtjahyo P, Chen H, Briaud J, Li Y, Wang J (2002) Bed shear stress around rectangular pier: numerical approach. In: First international conference on scour of foundations international society of soil mech and foundations

  34. Olsen NR, Melaaen MC (1993) Three-dimensional calculation of scour around cylinders. J Hydraul Res 119(9):1048–1054. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:9(1048)

    Article  Google Scholar 

  35. Raikar R, Dey S (2005a) Scour of gravel beds at bridge piers and abutments, vol 158, Thomas Telford Ltd, pp 157–162

  36. Raikar RV, Dey S (2005b) Clear-water scour at bridge piers in fine and medium gravel beds. Can J Civ Eng 32(4):775–781. https://doi.org/10.1139/l05-022

    Article  Google Scholar 

  37. Raikar RV, Dey S (2008) Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder. J Hydraul Res 46(2):247–264. https://doi.org/10.1080/00221686.2008.9521859

    Article  Google Scholar 

  38. Richardson E, Davis S (2001) Evaluating scour at bridges, HEC-18. Technical report, Rep. No. FHWA NHI

  39. Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401. https://doi.org/10.1017/S0022112005004507

    Article  Google Scholar 

  40. Salaheldin TM, Imran J, Chaudhry MH (2004) Numerical modeling of three-dimensional flow field around circular piers. J Hydraul Eng 130(2):91–100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91)

    Article  Google Scholar 

  41. Shatanawi KM, Aziz NM, Khan AA (2008) Frequency of discharge causing abutment scour in South Carolina. J Hydraul Eng 134(10):1507–1512. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:10(1507)

    Article  Google Scholar 

  42. Sheppard DM, Odeh M, Glasser T (2004) Large scale clear-water local pier scour experiments. J Hydraul Eng 130(10):957–963. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(957)

    Article  Google Scholar 

  43. Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the united states. J Perform Constr Facil 17(3):144–150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)

    Article  Google Scholar 

  44. Yang Y, Qi M, Li J, Ma X (2018) Evolution of hydrodynamic characteristics with scour hole developing around a pile group. Water 10(11):1632

    Article  Google Scholar 

Download references


This work was carried out as part of the Institute Scheme for Innovative Research and Development (ISIRD) titled “3D CFD Modeling of the Hydrodynamics and Local Scour Around Offshore Structures Under Combined Action of Current and Waves” from IIT Kharagpur.

Author information



Corresponding author

Correspondence to Mohammad Saud Afzal.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in the current paper.

Appendix: Calculation of scour depth

Appendix: Calculation of scour depth

The detailed calculation procedure of the scour depth given by Melville and Coleman (2000) and HEC-18 (Richardson and Davis 2001) can be found in Dey (2014).

Melville and Coleman

Velocity of incoming flow, \(u = \frac{q}{h} = \frac{10}{5} = 2\hbox { ms}^{-1}\)

Threshold shear velocity, \(u_{*c}\) , and incoming flow, \(u_{cr}\) , are estimated as follows:

\(u_{*c}\) \((0.1\le d_{50}<1 \hbox { mm}) = 0.0115 + 0.0125\) \(d_{50}^{1.4} = 0.02 \hbox { ms}^{-1}\)

\(u_{cr} = u_{*c} 5.75 \log \left( 5.53 \frac{h}{d_{50}} \right) = 0.52\, \hbox {ms}^{-1}\)

For uniform sediment, \(u_{a} = u_{cr}\).


For \(\frac{b}{h} = \frac{1.5}{5} = 0.3 < 0.7, k_{h} = 2.4 b = 3.6\hbox { m}\)

For \(\frac{u - u_{a}-u_{cr}}{u_{cr}} = 3.84 > 1\), \(k_{I} = 1\)

For \(\frac{b}{d_{50}} = 1875 > 1\), \(k_{d} = 1\)

For a circular pier, \(k_\mathrm{s} = 1\)

For the projected width, \(b_\mathrm{p} = L \hbox {sin}\alpha + b \hbox {cos}\alpha = 3\hbox { m}\)

\(k_{\alpha } = \left( \frac{b_\mathrm{p}}{b}\right) ^{0.65} = 1.569\)

For equilibrium scour depth, (\(t = t_\mathrm{e}\)), \(k_{t} = 1\)

Now, scour depth \(d_\mathrm{s} = k_{h}k_{I}k_{d}k_\mathrm{s}k_{\alpha }k_{t} = 5.65\hbox { m}\)


For a circular pier, \(k_\mathrm{s} = 1\)

For \(\frac{L}{b} = 4\) and \(\alpha = 15^{0}\), \(k_{\alpha } = 1.5\)

Assuming small dunal bed form and Froude number, \(F_{r} = \frac{2}{\sqrt{9.8 \times 5}} = 0.28\), \(k_\mathrm{bed} = 1.1\)

For \(d_{50} < 2\hbox { mm}\), \(k_{a} = 1\)

Now, scour depth

\(d_{s} = bk_\mathrm{s}k_{\alpha }k_\mathrm{bed}k_{a}\left( \frac{h}{b}\right) ^{0.35} F_{r}^{0.43} = 2.2\hbox { m}\)

Present equation

Considering one-sixth power law, \((m = 6)\)

For p = 1, q = 1

$$\begin{aligned} A & = \left( \frac{\pi p}{2+p}\right) \left( 1-\theta \right) \left( \gamma _\mathrm{s} -\gamma \right) = 5771.32\\ B& = \left( \frac{\pi q}{2+q}\right) \left( 1-\theta \right) \left( \gamma _\mathrm{s} -\gamma \right) = 5771.32\\ C&= \frac{\rho u_\mathrm{c}^{2}hb }{2} = 15{,}000\\ E&= \left( \rho u_\mathrm{c}^{2}hb \right) \left( \frac{2+2m}{2+3m}h \right) = 105{,}000\\&5771.32d^{1.5}_\mathrm{s} + 5771.32d^{1.5}_{s} - 15{,}000d_{s} - 105{,}000 = 0 ,\\ d_\mathrm{s}&= 6.88\hbox { m} \end{aligned}$$

Similarly, for p = 1, q = 2

$$\begin{aligned} A &= 5771.32, B = 8656.98, C = 15{,}000,\hbox { and }E = 105{,}000;\\&d_\mathrm{s} = 3.72\hbox { m} \end{aligned}$$

For p = 2, q = 1

$$\begin{aligned} A&= 8656.98, B = 5771.32, C = 15{,}000,\hbox { and } E = 105{,}000; \\&d_\mathrm{s} = 3.72\hbox { m} \end{aligned}$$

For p = 2, q = 2

$$\begin{aligned} A&= 8656.98, B = 8656.98, C = 15{,}000,\hbox { and } E = 105{,}000; \\&d_\mathrm{s} = 2.93\hbox { m} \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gazi, A.H., Afzal, M.S. A new mathematical model to calculate the equilibrium scour depth around a pier. Acta Geophys. 68, 181–187 (2020). https://doi.org/10.1007/s11600-019-00383-2

Download citation


  • Analytical solution
  • Scour
  • Energy balance
  • Sediment transport