Skip to main content

Advertisement

Log in

Seismic crust structure beneath the Aegean region in southwest Turkey from radial anisotropic inversion of Rayleigh and Love surface waves

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Turkish plate is covered by hundreds of accelerometer and broadband seismic stations with less than 50 km inter-station distance providing high-quality earthquake recordings within the last decade. We utilize part of these stations to extract the fundamental mode Rayleigh and Love surface wave phase and group velocity data in the period range 5–20 s to determine the crust structure beneath the Aegean region in southwest Turkey. The observed surface wave signals are interpreted using both single-station and two-station techniques. A tomographic inversion technique is employed to obtain the two-dimensional group velocity maps from the single-station group velocities. One-dimensional velocity–depth profiles under each two-dimensional mesh point, which are jointly interpreted to acquire the three-dimensional image of the shear-wave velocities underneath the study area, are attained by utilizing the least-squares inversion technique, which is repeated for both Rayleigh and Love surface waves. The isotropic crust structure cannot jointly invert the observed Rayleigh and Love surface waves where the radial anisotropic crust better describes the observed surface wave data. The intrusive magmatic activity related to the northward subducting African plate under the Turkish plate results the crust structure deformations, which we think, causing the observed radial anisotropy throughout complex pattern of dykes and sills. The magma flow resulting in the mineral alignment within dykes and sills contributes to the observed anisotropy. Due to the existence of dykes, the radial anisotropy in the upper crust is generally negative, i.e., vertically polarized S-waves (Vsv) are faster than horizontally polarized S-waves (Vsh). Due to the existence of sills, the radial anisotropy in the middle-to-lower crust is generally positive, i.e., horizontally polarized S-waves (Vsh) are faster than vertically polarized S-waves (Vsv). Similar radial anisotropic results to those of the single-station analyses are obtained by the two-station analyses utilizing the cross-correlograms. The widespread volcanic and plutonic rocks in the region are consistent with the current seismic interpretations of the crustal deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • AFAD (2017) Strong ground motion database of Türkiye (TR-NSMN). Disaster and Emergency Management Presidency, Ankara

    Google Scholar 

  • Agius MR, Lebedev S (2014) Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophys J Int 199:1395–1415

    Google Scholar 

  • Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S (2010) On the geodynamics of the Aegean rift. Tectonophysics 488:7–21

    Google Scholar 

  • Akay E, Işintek I, Erdoğan B, Hasözbek A (2011) Stratigraphy of the Afyon Zone around Emet (Kütahya, NW Anatolia) and geochemical characteristics of the Triassic volcanism along the northern Menderes Massif. Neues Jahrbuch Für Mineralogie—Abhandlungen 188:297–316

    Google Scholar 

  • Akbaş B, Akdeniz N, Aksay A, Altun İ, Balcı V, Bilginer E, Bilgiç T, Duru M, Ercan T, Gedik İ, Günay Y, Güven İH, Hakyemez HY, Konak N, Papak İ, Pehlivan Ş, Sevin M, Şenel M, Tarhan N, Turhan N, Türkecan A, Ulu Ü, Uğuz MF, Yurtsever A et al (2017) Geological map of Turkey. MTA (General Directorate of Mineral Research and Exploration of Turkey) Publications, Ankara

    Google Scholar 

  • Altıner D, Koçyiğit A, Farinacci A, Nicosia U, Conti MA (1991) Jurassic, Lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of the northwestern Anatolia. Geol Rom 18:13–80

    Google Scholar 

  • Altunkaynak S (2007) Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. J Geol 115:63–82

    Google Scholar 

  • Altunkaynak Ş, Dilek Y, Genç CŞ, Sunal G, Gertisser R, Furnes H, Foland KA, Yang J (2012) Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Res 21:961–986

    Google Scholar 

  • Anderson DL (1961) Elastic wave propagation in layered anisotropic media. J Geophys Res 66:2953–2963

    Google Scholar 

  • Anderson DL (1989) Theory of the Earth. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Arslan A, Güngör T, Erdoğan B, Passchier CW (2013) Tectonic transport directions of the Lycian nappes in southwest Turkey constrained by kinematic indicators. J Asian Earth Sci 64:198–209

    Google Scholar 

  • Aydemir A (2009) Tectonic investigation of Central Anatolia, Turkey, using geophysical data. J Appl Geophys 68:321–334

    Google Scholar 

  • Backus GE (1962) Long-wave anisotropy produced by horizontal layering. J Geophys Res 66:4427–4440

    Google Scholar 

  • Bakırcı T, Yoshizawa K, Özer MF (2012) Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography. Geophys J Int 190:1058–1076

    Google Scholar 

  • Baran Z, Dilek Y, Kadioglu YK (2010) Geology and geochemistry of the synextensional Salihli granitoid in the Menderes core complex, western Anatolia, Turkey. Int Geol Rev 52:336–368

    Google Scholar 

  • Bastow ID, Pilidou S, Kendall J-M, Stuart GW (2010) Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: evidence from surface waves. Geochem Geophys Geosyst 11:Q0AB05. https://doi.org/10.1029/2010GC003036

    Article  Google Scholar 

  • Behr Y, Townend J, Bannister S, Savage MK (2011) Crustal shear wave tomography of the Taupo Volcanic Zone, New Zealand, via ambient noise correlation between multiple three-component networks. Geochem Geophys Geosyst 12:Q03015. https://doi.org/10.1029/2010GC003385

    Article  Google Scholar 

  • Beucler É, Stutzmann É, Montagner JP (2003) Surface wave higher-mode phase velocity measurements using a roller-coaster-type algorithm. Geophys J Int 155:289–307

    Google Scholar 

  • Bingöl E, Akyürek B, Korkmazer B (1975) Geology of the Biga peninsula and some characteristics of the Karakaya blocky series. In: Proceedings of the Congress of Earth Sciences on the Occasion of the 50th Anniversary of the Turkish Republic. General Directorate of Mineral Research and Exploration of Turkey (MTA), Ankara, pp 71–77

  • Biryol CB, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184:1037–1057

    Google Scholar 

  • Bonev N, Beccaletto L (2007) From syn-to post-orogenic Tertiary extension in the north Aegean region: constraints on the kinematics in the eastern Rhodope–Thrace, Bulgaria–Greece and the Biga Peninsula, NW Turkey. Geol Soc Lond Spec Publ 291:113–142. https://doi.org/10.1144/SP291.6

    Article  Google Scholar 

  • Bozkurt E (2004) Granitoid rocks of the southern Menderes Massif (Southwest Turkey): field evidence for Tertiary magmatism in an extensional shear zone. Int J Earth Sci 93:52–71

    Google Scholar 

  • Bozkurt E, Oberhänsli R (2001) Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution—a synthesis. Int J Earth Sci 89:679–708

    Google Scholar 

  • Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95:2081–2092

    Google Scholar 

  • Burchardt S (2008) New insights into the mechanics of sill emplacement provided by field observations of the Njardvik Sill, Northeast Iceland. J Volcanol Geotherm Res 173:280–288

    Google Scholar 

  • Çakır Ö, Erduran M (2001) Effect of earth structure and source time function on inversion of single station regional surface waves for rupture mechanism and focal depth. J Balk Geophys Soc 4:69–90

    Google Scholar 

  • Cambaz MD, Karabulut H (2010) Love-wave group velocity maps of Turkey and surrounding regions. Geophys J Int 181:502–520

    Google Scholar 

  • Candan O, Dora OÖ, Oberhänsli R, Çetinkaplan M, Partzsch JH, Warkus FC, Dürr S (2001) Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. Int J Earth Sci 89:793–811

    Google Scholar 

  • Candan O, Çetinkaplan M, Oberhänsli R, Rimmelé G, Akal C (2005) Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey. Lithos 84:102–124

    Google Scholar 

  • Çelik ÖF, Delaloye M (2003) Origin of metamorphic sole rocks and their post kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geol J 38:235–256

    Google Scholar 

  • Chan J, Schmitt DR (2015) Elastic anisotropy of a metamorphic rock sample of the Canadian Shield in Northeastern Alberta. Rock Mech Rock Eng 48:1369–1385

    Google Scholar 

  • Cho K-H, Herrmann RB, Ammon CJ, Lee K (2007) Imaging the upper crust of the Korean Peninsula by surface-wave tomography. Bull Seism Soc Am 97:198–207

    Google Scholar 

  • Cho K-H, Chen H-W, Kang I-B, Lee S-H (2011) Crust and upper mantle structures of the region between Korea and Taiwan by surface wave dispersion study. Geosci J 15:71–81. https://doi.org/10.1007/s12303-011-0009-9

    Article  Google Scholar 

  • Çınar H, Alkan H (2016) Crustal S-wave structure beneath Eastern Black Sea Region revealed by Rayleigh-wave group velocities. J Asian Earth Sci 115:273–284

    Google Scholar 

  • Collins AS, Robertson AHF (1997) Lycian mélange, southwest Turkey: an emplaced Cretaceous accretionary complex. Geology 25:255–258

    Google Scholar 

  • Crampin S (1984) Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys J R Astron Soc 76:135–145

    Google Scholar 

  • Çubuk-Sabuncu Y, Taymaz T, Fichtner A (2017) 3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography. Phys Earth Planet Inter 270:90–112

    Google Scholar 

  • Delaloye M, Bingöl E (2000) Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. Int Geol Rev 42:241–268

    Google Scholar 

  • Delph JR, Biryol CB, Beck SL, Zandt G, Ward KM (2015) Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophys J Int 202:261–276

    Google Scholar 

  • Demirtasli E, Turhan N, Bilgin AZ, Selim M (1984) Geology of the Bolkar Mountains. In: Tekeli O, Göncüoğlu MC (eds) Geology of the Taurus Belt, Proceedings of the International Symposium, Ankara-Turkey, pp 125–141

  • Dias RC, Julià J, Schimmel M (2015) Rayleigh-wave, group-velocity tomography of the Borborema Province, NE Brazil, from ambient seismic noise. Pure appl Geophys 172:1429–1449

    Google Scholar 

  • Dilek Y, Altunkaynak Ş (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geol Soc Lond Spec Publ 311:213–233

    Google Scholar 

  • Dilek Y, Altunkaynak Ş (2010) Geochemistry of Neogene—quaternary alkaline volcanism in western Anatolia, Turkey, and implications for the Aegean mantle. Int Geol Rev 52:631–655

    Google Scholar 

  • Dilek Y, Sandvol E (2009) Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region. Geol Soc Lond Spec Publ 327:127–160

    Google Scholar 

  • Dilek Y, Altunkaynak Ş, Öner Z (2009) Syn-extensional granitoids in the Menderes core complex, and the late Cenozoic extensional tectonics of the Aegean Province. In: Ring U, Wernicke B (eds) Extending a continent: architecture, rheology and heat budget, vol 321. Geological Society of London (Special Publications), London, pp 197–223

    Google Scholar 

  • Dogru F, Pamukcu O, Gonenc T, Yildiz H (2018) Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models. Bollettino di Geofisica Teorica ed Applicata 59:135–160

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Google Scholar 

  • Dziewonski AM, Hales AL (1972) Numerical analysis of dispersed seismic waves. In: Methods in computational physics: advances in research and applications, vol 11, pp 39–85

  • Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444

    Google Scholar 

  • Dziewonski AM, Chou T-A, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852. https://doi.org/10.1029/JB086iB04p02825

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9. https://doi.org/10.1016/j.pepi.2012.04.002

    Article  Google Scholar 

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F (2013) Active faults map of Turkey (scale:1/1.125.000). MTA (General Directorate of Mineral Research and Exploration of Turkey) Publications, Ankara

    Google Scholar 

  • Endrun B, Meier T, Lebedev S, Bohnhoff M, Stavrakakis G, Harjes H-P (2008) S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys J Int 174:593–616

    Google Scholar 

  • Erduran M (2009) Teleseismic inversion of crustal S-wave velocities beneath the Isparta Station. J Geodyn 47:225–236

    Google Scholar 

  • Erduran M, Endrun B, Meier T (2008) Continental versus oceanic lithosphere beneath the eastern Mediterranean Sea—implications from Rayleigh wave dispersion measurements. Tectonophysics 457:42–52

    Google Scholar 

  • Ersoy YE, Helvacı C, Sözbilir H (2010) Tectono-stratigraphic evolution of the NE–SW-trending superimposed Selendi basin: implications for late Cenozoic crustal extension in Western Anatolia,Turkey. Tectonophysics 488:210–232

    Google Scholar 

  • Faccenda M, Capitanio FA (2013) Seismic anisotropy around subduction zones: insights from three dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem Geophys Geosyst 14:1–20. https://doi.org/10.1029/2012GC004451

    Article  Google Scholar 

  • Feng M, Assumpção M, Van der Lee S (2004) Group-velocity tomography and lithospheric S-velocity structure of the South American continent. Phys Earth Planet Inter 147:315–331

    Google Scholar 

  • Fichtner A, Villaseñor A (2015) Crust and upper mantle of the western Mediterranean—constraints from full-waveform inversion. Earth Planet Sci Lett 428:52–62

    Google Scholar 

  • Friederich W (2003) The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms. Geophys J Int 153:88–102

    Google Scholar 

  • Fu YV, Li A (2015) Crustal shear wave velocity and radial anisotropy beneath the Rio Grande rift from ambient noise tomography. J Geophys Res 120:1005–1019. https://doi.org/10.1002/2014JB011602

    Article  Google Scholar 

  • GEOSIG (2012) Geosig, AC-73 triaxial force balance accelerometer. http://www.seismicsystems.net/images/pdfs/GS_AC-73_Leaflet_V12.pdf. Accessed 24 July 2017

  • Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson SN (2013) What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res 24:243–274

    Google Scholar 

  • Gessner K, Gallardo LA, Wedin F, Sener K (2016) Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion. Int J Earth Sci 105:2133–2148

    Google Scholar 

  • Gessner K, Markwitz V, Güngör T (2017) Crustal fluid flow in hot continental extension: tectonic framework of geothermal areas and mineral deposits in western Anatolia. Geol Soc Lond Spec Publ 453:289–311

    Google Scholar 

  • Godfrey HJ, Fry B, Savage MK (2017) Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: fast Rayleigh and slow Love waves indicate strong shallow anisotropy. J Volcanol Geotherm Res 336:33–50

    Google Scholar 

  • Gök R, Mellors RJ, Sandvol E, Pasyanos M, Hauk T, Takedatsu R, Yetirmishli G, Teoman U, Turkelli N, Godoladze T, Javakishvirli Z (2011) Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region. J Geophys Res 116:B05303. https://doi.org/10.1029/2009JB000837

    Article  Google Scholar 

  • Görür N, Tüysüz O, Şengör AMC (1998) Tectonic evolution of the Central Anatolian basins. Int Geol Rev 40:832–850

    Google Scholar 

  • Govers R, Fichtner A (2016) Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth Planet Sci Lett 450:10–19

    Google Scholar 

  • GURALP (2013) Guralp systems, CMG-5TD digital accelerometer, operator’s guide. https://www.guralp.com/documents/MAN-050-0005.pdf. Accessed 20 July 2017

  • Gursoy H, Piper JDA, Tatar O, Mesci L (1998) Paleomagnetic study of the Karaman and Karapinar olcanic complexes, Central Turkey: neotectonic rotation in the south-central sector of the Anatolian Block. Tectonophysics 299:191–211

    Google Scholar 

  • Gürsu S, Göncüoğlu MC, Bayhan H (2004) Geology and geochemistry of the pre-early Cambrian rocks in the Sandikli area: implications for the Pan-African evolution of NW Gondwanaland. Gondwana Res 7:923–935

    Google Scholar 

  • Hacker BR, Ritzwoller MH, Xie J (2014) Partially melted, micabearing crust in Central Tibet. Tectonics 33:1408–1424. https://doi.org/10.1002/2014TC003545

    Article  Google Scholar 

  • Hall J, Aksu AE, Elitez I, Yaltırak C, Çifçi G (2014a) The Fethiye–Burdur Fault Zone: a component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean. Tectonophysics 635:80–99

    Google Scholar 

  • Hall J, Aksu AE, King H, Gogacz A, Yaltırak C, Çifçi G (2014b) Miocene—recent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Mar Geol 349:1–23

    Google Scholar 

  • Harmon N, Rychert CA (2015) Seismic imaging of deep crustal melt sills beneath Costa Rica suggests a method for the formation of the Archean continental crust. Earth Planet Sci Lett 430:140–148

    Google Scholar 

  • Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull. Seism. Soc. Am. 43:17–34

    Google Scholar 

  • Heineke C, Niedermann S, Hetzel R, Akal C (2016) Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (Western Turkey) using cosmogenic 3He and 10Be. Quat Geochronol 34:81–91

    Google Scholar 

  • Herrin E, Goforth T (1977) Phase-matched filters: application to the study of Rayleigh waves. Bull Seismol Soc Am 67:1259–1275

    Google Scholar 

  • Herrmann RB (1973) Some aspects of band-pass filtering of surface waves. Bull Seismol Soc Am 63:663–671

    Google Scholar 

  • Herrmann RB (2002) Computer programs in seismology, version 3.30. St. Louis University, Missouri

    Google Scholar 

  • Hetzel R, Ring U, Akal C, Troesch M (1995) Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. J Geol Soc Lond 152:639–654

    Google Scholar 

  • Hier-Majumder S, Drombosky T (2015) Development of anisotropic contiguity in deforming partially molten aggregates: 2. Implications for the lithosphere–asthenosphere boundary. J Geophys Res Solid Earth 120:764–777. https://doi.org/10.1002/2014JB011454

    Article  Google Scholar 

  • İlkışık OM (1995) Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 244:175–184

    Google Scholar 

  • Işık V, Tekeli O (2001) Late orogenic crustal extension in the northern Menderes massif (western Turkey): evidence for metamorphic core complex formation. Int J Earth Sci 89:757–765

    Google Scholar 

  • Janssen C, Bohnhoff M, Vapnik Y, Görgün E, Bulut F, Plessen B, Pohl D, Aktar M, Okay AI, Dresen G (2009) Tectonic evolution of the Ganos segment of the North Anatolian Fault (NW Turkey). J Struct Geol 31:11–28

    Google Scholar 

  • Jaxybulatov K, Shapiro NM, Koulakov I, Mordret A, Landès M, Sens-Schönfelder C (2014) A large magmatic sill complex beneath the Toba caldera. Science 346:617–619

    Google Scholar 

  • Ji S, Salisbury MH (1993) Shear-wave velocities, anisotropy and splitting in high-grade mylonites. Tectonophysics 221:453–473

    Google Scholar 

  • Ji S, Shao T, Michibayashi K, Oya S, Satsukawa T, Wang Q, Zhao W, Salisbury MH (2015) Magnitude and symmetry of seismic anisotropy in mica- and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J Geophys Res Solid Earth 120:6404–6430. https://doi.org/10.1002/2015JB012209

    Article  Google Scholar 

  • Jin G, Gaherty JB (2015) Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophys J Int 201:1383–1398

    Google Scholar 

  • Johnson LR, Wenk HR (1974) Anisotropy of physical properties in metamorphic rocks. Tectonophysics 23:79–98

    Google Scholar 

  • Jolivet L, Brun J-P (2010) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci 99:109–138

    Google Scholar 

  • Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, Lecomte E, Burov E, Denèle Y, Brun J-P, Philippon M, Paul A, Salaün G, Karabulut H, Piromallo C, Monié P, Gueydan F, Okay AI, Oberhänsli R, Pourteau A, Augier R, Gadenne L, Driussi O (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597–598:1–33

    Google Scholar 

  • Julià J, Ammon CJ, Herrmann RB, Correig AM (2000) Joint inversion of receiver function and surface wave dispersion observations. Geophys J Int 143:99–112

    Google Scholar 

  • Karagianni EE, Papazachos CB (2007) Shear velocity structure in the Aegean region obtained by joint inversion of Rayleigh and Love waves. Geol Soc Lond Spec Publ 291:159–181

    Google Scholar 

  • Karagianni EE, Papazachos CB, Panagiotopoulos DG, Suhadolc P, Vuan A, Panza GF (2005) Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophys J Int 160:127–143

    Google Scholar 

  • Karaoğlu Ö, Helvacı C (2014) Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos 192:226–239

    Google Scholar 

  • Karato S, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Planet Sci 36:59–95

    Google Scholar 

  • Kaya C (2010) Deep crustal structure of northwestern part of Turkey. Tectonophysics 489:227–239

    Google Scholar 

  • Kaymakci N, Özçelik Y, White SH, van Dijk PM (2009) Tectono-stratigraphy of the Çankiri Basin: late Cretaceous to early Miocene evolution of the Neotethyan suture zone in Turkey. In: van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone, vol 311. Geological Society of London (Special Publication), London, pp 67–106

    Google Scholar 

  • Ketin I (1966) Tectonic units of Anatolia (Asia Minor). Miner Resour Explor Inst Turk (MTA) Bull 66:22–34

    Google Scholar 

  • Ko B, Jung H (2015) Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nat Commun 6:6586. https://doi.org/10.1038/ncomms7586

    Article  Google Scholar 

  • Koçyiğit A, Özacar AA (2003) Extensional neotectonic regime through the NE edge of the Outer Isparta Angle, SW Turkey: new field and seismic data. Turk J Earth Sci 12:67–90

    Google Scholar 

  • Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42

    Google Scholar 

  • Lebedev S, Adam JM-C, Meier T (2013) Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 609:377–394

    Google Scholar 

  • Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167:37–56

    Google Scholar 

  • Levshin A, Ratnikova L, Berger J (1992) Peculiarities of surface- wave propagation across central Eurasia. Bull Seismol Soc Am 82:2464–2493

    Google Scholar 

  • Levshin AL, Ritzwoller MH, Resovsky JS (1999) Source effects on surface wave group travel times and group velocity maps. Phys Earth Planet Inter 115:293–312

    Google Scholar 

  • Li A, Forsyth DW, Fischer KM (2003) Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion. J Geophys Res 108(B8):2362. https://doi.org/10.1029/2002JB002259

    Article  Google Scholar 

  • Licciardia A, Eken T, Taymaz T, Agostinettic NP, Yolsal-Çevikbilen S (2018) Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation. Phys Earth Planet Inter 277:99–112

    Google Scholar 

  • Lin FC, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys J Int 173:281–298

    Google Scholar 

  • Long MD, Becker TW (2010) Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett 297:341–354

    Google Scholar 

  • Mahan K (2006) Retrograde mica in deep crustal granulites: implications for crustal seismic anisotropy. Geophys Res Lett 33:L24301. https://doi.org/10.1029/2006GL028130

    Article  Google Scholar 

  • Mcclusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle HG, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Veis G (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Google Scholar 

  • McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wave field transformation. Geophysics 46:869–874

    Google Scholar 

  • Meier T, Dietrich K, Stöckhert B, Harjes H-P (2004) One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys J Int 156:45–58

    Google Scholar 

  • Montagner JP (2007) Deep Earth structure—upper mantle structure: global isotropic and anisotropic elastic tomography. In: Dziewonski AM, Romanowicz B (eds) Treatise on geophysics, volume 1: seismology and structure of the Earth. Elsevier, Amsterdam, pp 559–590

    Google Scholar 

  • Montagner J-P, Anderson DL (1989) Petrological constraints on seismic anisotropy. Phys Earth Planet Inter 54:82–105. https://doi.org/10.1016/0031-9201(89)90189-1

    Article  Google Scholar 

  • Montagner J-P, Nataf H-C (1986) A simple method for inverting the azimuthal anisotropy of surface waves. J Geophys Res 91:511–520. https://doi.org/10.1029/JB091iB01p00511

    Article  Google Scholar 

  • Mordret A, Rivet D, Landès M, Shapiro NM (2015) Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise. J Geophys Res Solid Earth 120:406–427. https://doi.org/10.1002/2014JB011654

    Article  Google Scholar 

  • Moschetti MP, Ritzwoller MH, Shapiro NM (2007) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochem Geophys Geosyst 8:Q08010. https://doi.org/10.1029/2007GC001655

    Article  Google Scholar 

  • Mottaghi AA, Rezapour M, Korn M (2013) Ambient noise surface wave tomography of the Iranian Plateau. Geophys J Int 193:452–462

    Google Scholar 

  • MTA (2002) Geological map of Turkey (scale:1/500000). MTA (General Directorate of Mineral Research and Exploration of Turkey) Publications, Ankara

    Google Scholar 

  • Nolet G (1990) Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. J Geophys Res 95(B6):8499–8512

    Google Scholar 

  • Oberhänsli R, Candan O, Dora ÖO, Dürr SH (1997) Eclogites within the Menderes Massif/Western Turkey. Lithos 41:135–150

    Google Scholar 

  • Oberhänsli R, Partzsch J, Candan O, Cetinkaplan M (2001) First occurrence of Fe–Mg–carpholite documenting a high-pressure metamorphism in metasediments of the Lycian Nappes, SW Turkey. Int J Earth Sci 89:867–873

    Google Scholar 

  • Obrebski M, Kiselev S, Vinnik L, Montagner J-P (2010) Anisotropic stratification beneath Africa from joint inversion of SKS and P receiver functions. J Geophys Res 115:1–15. https://doi.org/10.1029/2009JB006923

    Article  Google Scholar 

  • Okay AI (1986) High-pressure/low-temperature metamorphic rocks of Turkey. Geol Soc Am Mem 164:333–347

    Google Scholar 

  • Okay AI (1989) Geology of the Menderes Massif and the Lycian Nappes south of Denizli, western Taurides. Miner Resour Explor Bull 109:37–51

    Google Scholar 

  • Okay AI (2001) Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. Int J Earth Sci 89:709–727

    Google Scholar 

  • Okay AI (2008) Geology of Turkey: a synopsis. Anschnitt 21:19–42

    Google Scholar 

  • Okay AI, Satır M (2000) Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geol Mag 137:495–516

    Google Scholar 

  • Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horváth D, Sérranne M (eds) The Mediterranean basins: tertiary extension within the Alpine Orogen, vol 156. Geological Society of London (Special Publication), London, pp 475–515

    Google Scholar 

  • Okay AI, Siyako M, Bürkan KA (1991) Geology and tectonic evolution of the Biga Peninsula, northwest Turkey. Bull Tech Univ Istanb 44:191–256

    Google Scholar 

  • Okay AI, İşintek İ, Altıner D, Özkan-Altıner S, Okay N (2012) An olistostrome–mélange belt formed along a suture: Bornova Flysch zone, western Turkey. Tectonophysics 568–569:282–295

    Google Scholar 

  • Özbakır AD, Govers R, Wortel R (2017) Active faults in the Anatolian-Aegean plate boundary region with Nubia. Turk J Earth Sci 26:30–56

    Google Scholar 

  • Özbek A, Gül M, Karacan K, Alca Ö (2018) Anisotropy effect on strengths of metamorphic rocks. J Rock Mech Geotech Eng 10:164–175

    Google Scholar 

  • Ozer C, Gok E, Polat O (2018) Three-dimensional seismic velocity structure of the Aegean Region of Turkey from local earthquake tomography. Ann Geophys 61, 1:SE111. https://doi.org/10.4401/ag-7543

    Article  Google Scholar 

  • Özgül N (1984) Stratigraphy and tectonic evolution of the Central Taurides. In: Tekeli O, Göncüoğlu MC (eds) Geology of the Taurus Belt, Proceedings of the International Symposium on the Geology of the Taurus Belt, 1983, Ankara-Turkey, Mineral Research and Exploration Institute of Turkey, Ankara, pp 77–90

  • Parsons T, Sleep NH, Thompso GA (1992) Host rock rheology controls on the emplacement of tabular intrusions: implications for underplating of extending crust. Tectonics 11:1348–1356

    Google Scholar 

  • Pearce FD, Rondenay S, Sachpazi M, Charalampakis M, Royden LH (2012) Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone. J Geophys Res 117:B07306. https://doi.org/10.1029/2011JB009023

    Article  Google Scholar 

  • Petford N, Clemens JC, Vigneresse JL (1997) Application of information theory to the formation of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 3–10

    Google Scholar 

  • Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108:2065. https://doi.org/10.1029/2002JB001757

    Article  Google Scholar 

  • Polat G, Özel NM, Koulakov I (2016) Investigating P- and S-wave velocity structure beneath the Marmara region (Turkey) and the surrounding area from local earthquake tomography. Earth Planets Space 68:132. https://doi.org/10.1186/s40623-016-0503-4

    Article  Google Scholar 

  • Portner DE, Delph JR, Biryol CB, Beck SL, Zandt G, Özacar AA, Sandvol E, Türkelli N (2018) Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia. Geosphere 14:907–925

    Google Scholar 

  • Pourteau A, Oberhänsli R, Candan O, Barrier E, Vrielynck B (2015) Neotethyan closure history of western Anatolia: a geodynamic discussion. Int J Earth Sci 105:203–224

    Google Scholar 

  • Purvis M, Robertson A (2005) Sedimentation of the Neogene–Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sediment Geol 173:373–408

    Google Scholar 

  • Rawlinson N, Sambridge M (2003) Seismic traveltime tomography of the crust and lithosphere. Adv Geophys 46:81–198

    Google Scholar 

  • Rawlinson N, Sambridge M (2004a) Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics 69:1338–1350

    Google Scholar 

  • Rawlinson N, Sambridge M (2004b) Wavefront evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int 156:631–647

    Google Scholar 

  • Rawlinson N, Sambridge M (2005) The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor Geophys 36:341–350

    Google Scholar 

  • Rimmelé G, Jolivet L, Oberhänsli R, Goffé B (2003a) Deformation history of the high-pressure Lycian Nappes and implications for tectonic evolution of SW Turkey. Tectonics 22:1007. https://doi.org/10.1029/2001TC901041

    Article  Google Scholar 

  • Rimmelé G, Oberhänsli R, Goffé B, Jolivet L, Candan O, Çetinkaplan M (2003b) First evidence of high-pressure metamorphism in the “Cover Series” of the southern Menderes Massif. Tectonic and metamorphic implications for the evolution of SW Turkey. Lithos 71:19–46

    Google Scholar 

  • Rimmelé G, Parra T, Goffé B, Oberhänsli R, Jolivet L, Candan O (2005) Exhumation paths of high-pressure–low-temperature metamorphic rocks from the Lycian Nappes and the Menderes Massif (SW Turkey): a multi-equilibrium approach. J Petrol 46:641–669

    Google Scholar 

  • Ring U, Layer PW (2003) High-pressure metamorphism in the Aegean, eastern Mediterranean: underplating and exhumation from the Late Cretaceous until the Miocene to Recent above the retreating Hellenic subduction zone. Tectonics 22:1022. https://doi.org/10.1029/2001TC001350

    Article  Google Scholar 

  • Ring U, Johnson C, Hetzel R, Gessner K (2003) Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geol Mag 140:421–441

    Google Scholar 

  • Ritzwoller MH, Levshin AL (1998) Eurasian surface wave tomography: group velocities. J Geophys Res 103(B3):4839–4878

    Google Scholar 

  • Roche V, Laurent V, Cardello GL, Jolivet L, Scaillet S (2016) Anatomy of the Cycladic Blueschist Unit on Sifnos Island (Cyclades, Greece). J Geodyn 97:62–87

    Google Scholar 

  • Salaün G, Pedersen H, Paul A, Farra V, Karabulut H, Hatzfeld D, Papazachos C, Childs DM, Pequegnat C, The SIMBAAD Team (2012) High-resolution surface wave tomography of the Aegean-Anatolia region: constraints on upper mantle structure. Geophys J Int 190:406–420

    Google Scholar 

  • SARA (2017) Sara electronics instruments, SA10 force balance accelerometer. http://www.sara.pg.it/documents/commercial/SA10_DATASHEET_ENG.PDF. Accessed 26 July 2017

  • Saroglou H, Marinos P, Tsiambaos G (2004) The anisotropic nature of selected metamorphic rocks from Greece. S Afr Inst Min Metall 104:217–222

    Google Scholar 

  • Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36:571–590

    Google Scholar 

  • Şengör AMC (1979a) Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 279:590–593

    Google Scholar 

  • Şengör AMC (1979b) The north Anatolian transform fault: its age, offset and tectonic significance. J Geol Soc Lond 136:269–282

    Google Scholar 

  • Şengör AMC (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15:213–244

    Google Scholar 

  • Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Google Scholar 

  • Şengör AMC, Satır M, Akkök R (1984) Timing of tectonic events in the Menderes Massif, Western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3:697–707

    Google Scholar 

  • Seyitoğlu G, Işık V, Çemen I (2004) Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova 16:358–364

    Google Scholar 

  • Shapiro NM, Ritzwoller MH (2002) Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys J Int 151:88–105

    Google Scholar 

  • Shen W, Ritzwoller MH, Schulte-Pelkum V (2013) A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. J Geophys Res Solid Earth 118:262–276. https://doi.org/10.1029/2012JB009602

    Article  Google Scholar 

  • Soomro RA, Weidle C, Cristiano L, Lebedev S, Meier T, PASSEQ Working Group (2016) Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements. Geophys J Int 204:517–534

    Google Scholar 

  • Spica Z, Perton M, Legrand D (2017) Anatomy of the Colima volcano magmatic system, Mexico. Earth Planet Sci Lett 459:1–13

    Google Scholar 

  • Stampfli GM (2000) Tethyan oceans. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 173. Geological Society of London (Special Publication), London, pp 1–23

    Google Scholar 

  • Tank SB, Özaydın S, Karaş M (2018) Revealing the electrical properties of a gneiss dome using three-dimensional magnetotellurics: burial and exhumation cycles associated with faulting in Central Anatolia, Turkey. Phys Earth Planet Inter 283:26–37

    Google Scholar 

  • Tarantola A (1987) Inverse problem theory. Elsevier Science Company Inc., Amsterdam, pp 187–255

    Google Scholar 

  • Tarantola A, Nercessian A (1984) Three-dimensional inversion without blocks. Geophys J R Astron Soc 76:299–306

    Google Scholar 

  • Taymaz T, Yılmaz Y, Dilek Y (eds) (2007) The geodynamics of the Aegean and Anatolia: introduction, vol 291. Geological Society of London (Special Publications), London, pp 1–16

    Google Scholar 

  • Tezel T, Erduran M, Alptekin Ö (2007) Crustal shear wave velocity structure of Turkey by surface wave dispersion analysis. Ann Geophys 50:177–190

    Google Scholar 

  • Thomson SN, Ring U (2006) Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics 25:TC3005. https://doi.org/10.1029/2005TC001833

    Article  Google Scholar 

  • Torsvik TH, Cocks LRM (2009) The Lower Palaeozoic palaeogeographical evolution of the northeastern and eastern peri-Gondwanan margin from Turkey to New Zealand. Geol Soc Lond Spec Publ 325:3–21

    Google Scholar 

  • Unsworth M (2010) Magnetotelluric studies of active continent–continent collisions. Surv Geophys 31:137–161

    Google Scholar 

  • van Hinsbergen DJJ (2010) A key extensional metamorphic complex reviewed and restored: the Menderes Massif of western Turkey. Earth Sci Rev 102:60–76

    Google Scholar 

  • van Hinsbergen DJJ, Kaymakci N, Spakman W, Torsvik TH (2010) Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth Planet Sci Lett 297:674–686

    Google Scholar 

  • Vanacore EA, Taymaz T, Saygin E (2013) Moho structure of the Anatolian Plate from receiver function analysis. Geophys J Int 193:329–337

    Google Scholar 

  • Vernik L, Lockner D, Zoback MD (1992) Anisotropic strength of some typical metamorphic rocks from the KTB pilot hole, Germany. Sci Drill 3:153–160

    Google Scholar 

  • Vigneresse J-L, Tikoff B, Améglio L (1999) Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 302:203–224

    Google Scholar 

  • Visser K, Trampert J, Lebedev S, Kennett BLN (2008) Probability of radial anisotropy in the deep mantle. Earth Planet Sci Lett 270:241–250

    Google Scholar 

  • Waldron JWF (1984) Structural history of the Antalya Complex in the ‘Isparta angle’, Southwest Turkey. Geol Soc Lond Spec Publ 17:273–286

    Google Scholar 

  • Warren LM, Beck SL, Biryol CB, Zandt G, Özacar AA, Yang Y (2013) Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography. Geophys J Int 194:1941–1954

    Google Scholar 

  • Whitney DL, Teyssier C, Kruckenberg SC, Morgan VL, Iredale LJ (2008) High pressure–low-temperature metamorphism of metasedimentary rocks, southern Menderes Massif, western Turkey. Lithos 101:218–232

    Google Scholar 

  • Yang Y, Forsyth DW (2006) Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys J Int 166:1148–1160

    Google Scholar 

  • Yao H, Xu G, Zhu L, Xiao X (2005) Mantle structure from interstation Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Phys Earth Planet Inter 148:39–54

    Google Scholar 

  • Yao H, Van der Hilst RD, De Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys J Int 166:732–744

    Google Scholar 

  • Yılmaz Y (1997) Geology of Western Anatolia. E.T.H. Univ. Press, Zurich. In: Schindler C, Fister MP (eds) Active tectonics of Northwestern Anatolia—the Marmara Poly-Project. Vdf Hochschulverlag AG an der ETH, Zürich, pp 31–53

  • Yılmaz Y (2008) Main geological problems of Western Anatolia and the significance of the Bodrum magmatic province. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1307/2/1/012007

    Article  Google Scholar 

  • Yilmaz Y, Genç ŞC, Gürer F, Bozcu M, Yilmaz K, Karacik Z, Altunkaynak Ş, Elmas A (2000) When did the Western Anatolian grabens begin to develop? Geol Soc Lond Spec Publ 173:353–384

    Google Scholar 

  • Yolsal-Çevikbilen S, Taymaz T, Helvacı C (2014) Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkey): neotectonics, seismotectonics and geodynamic implications. Tectonophysics 635:100–124

    Google Scholar 

  • Yoshizawa K, Kennett BLN (2002) Determination of the influence zone for surface wave paths. Geophys J Int 149:440–453

    Google Scholar 

  • Yoshizawa K, Kennett BLN (2004) Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects. J Geophys Res 109:B02310. https://doi.org/10.1029/2002JB002254

    Article  Google Scholar 

  • Yoshizawa K, Miyake K, Yomogida K (2010) 3D upper mantle structure beneath Japan and its surrounding region from inter-station dispersion measurements of surface waves. Phys Earth Planet Inter 183:4–19

    Google Scholar 

  • Zhang S, Karato S (1995) Lattice preferred orientation of olivine deformed in simple shear. Nature 375:774–777. https://doi.org/10.1038/375774a0

    Article  Google Scholar 

  • Zor E, Sandvol E, Gürbüz C, Türkelli N, Seber D, Barazangi M (2003) The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophys Res Lett 30:8044. https://doi.org/10.1029/2003GL018192

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for critically reviewing the manuscript. KOERI (Kandilli Observatory and Earthquake Research Institute) is gratefully acknowledged for the broadband seismograms. AFAD (Disaster and Emergency Management Presidency) is thanked for providing the accelerogram recordings. We gratefully acknowledge the use of Generic Mapping Tool (GMT) in several figure illustrations. Accelerogram instrument distributors kindly provided the pole–zero files.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakır, Ö. Seismic crust structure beneath the Aegean region in southwest Turkey from radial anisotropic inversion of Rayleigh and Love surface waves. Acta Geophys. 66, 1303–1340 (2018). https://doi.org/10.1007/s11600-018-0223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-0223-1

Keywords

Navigation